Mark Child
Appearance
Mark Sheard Child | |
---|---|
Born | 17 August 1937 |
Alma mater | Clare College, Cambridge |
Awards | Fellow of the Royal Society |
Scientific career | |
Institutions | University of Oxford |
Thesis | The vibrational spectra of electronically degenerate molecules (1963) |
Doctoral advisor | H. Christopher Longuet-Higgins[1] |
Doctoral students | Peter Coveney[2] |
Website | research |
Mark Sheard Child FRS (born 17 August 1937)[3] is a British chemist, and Emeritus Fellow of St Edmund Hall, Oxford.
Education
Child attended Pocklington School from 1947 to 1955.[4][failed verification] He earned his Doctor of Philosophy degree from the University of Cambridge in 1963 with a thesis on The vibrational spectra of electronically degenerate molecules.
Research
Child's research interests include semiclassical mechanics,[5] Molecular collision theory,[6] Rydberg states[7][8][9][10] and Quantum Level Structures at a Saddle point.[11][12][13][14]
References
- ^ "Chemistry Tree - Mark S. Child Details".
- ^ Coveney, Peter V (1985). Semiclassical methods in scattering and spectroscopy (DPhil thesis). University of Oxford.
- ^ CHILD, Prof. Mark Sheard, Who's Who 2014, A & C Black, 2014; online edn, Oxford University Press, 2014
- ^ "Home". pocklingtonschool.com.
- ^ Mark Child (1991). Semiclassical mechanics with molecular applications. Oxford: Clarendon Press. ISBN 978-0-19-855654-1.
- ^ Mark Child (1996). Molecular collision theory. New York: Dover Publications. ISBN 978-0-486-69437-5.
- ^ Mark Child (2011). Theory of Molecular Rydberg States (Cambridge Molecular Science). Cambridge, UK: Cambridge University Press. ISBN 978-0-521-76995-2.
- ^ Child, M. S.; Jungen, C. (1990). "Quantum defect theory for asymmetric tops: Application to the Rydberg spectrum of H2O". The Journal of Chemical Physics. 93 (11): 7756. Bibcode:1990JChPh..93.7756C. doi:10.1063/1.459355.
- ^ Child, M. S. (1997). "The Rydberg states of H2O". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 355 (1729): 1623–1636. Bibcode:1997RSPTA.355.1623C. doi:10.1098/rsta.1997.0080. S2CID 93739122.
- ^ Hiyama, M.; Child, M. S. (2002). "Ab initio R-matrix/multichannel quantum defect theory study of nitric oxide". Journal of Physics B: Atomic, Molecular and Optical Physics. 35 (5): 1337. Bibcode:2002JPhB...35.1337H. doi:10.1088/0953-4075/35/5/316. S2CID 250830242.
- ^ Child, M. S.; Weston, T.; Tennyson, J. (1999). "Quantum monodromy in the spectrum of H2O and other systems: New insight into the level structure of quasi-linear molecules". Molecular Physics. 96 (3): 371. Bibcode:1999MolPh..96..371C. CiteSeerX 10.1.1.324.1149. doi:10.1080/00268979909482971.
- ^ Jacobson, M. P.; Child, M. S. (2001). "Spectroscopic signatures of bond-breaking internal rotation. II. Rotation-vibration level structure and quantum monodromy in HCP". The Journal of Chemical Physics. 114 (1): 262. Bibcode:2001JChPh.114..262J. doi:10.1063/1.1330746.
- ^ Child, M. S. (2007). "Quantum Monodromyand Molecular Spectroscopy". Advances in Chemical Physics. Advances in Chemical Physics. Vol. 136. pp. 39–02. doi:10.1002/9780470175422.ch2. ISBN 9780470175422.
- ^ Cooper, C. D.; Child, M. S. (2005). "Quantum level structures at a Fermi resonance with angular momentum: Classical periodic orbits, catastrophe maps and quantum monodromy". Physical Chemistry Chemical Physics. 7 (14): 2731–2739. Bibcode:2005PCCP....7.2731C. doi:10.1039/B502772C. PMID 16189587.