Jump to content

Pterobilin

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by WizWheatly (talk | contribs) at 19:15, 5 October 2022 (See also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Pterobilin
Identifiers
3D model (JSmol)
ChemSpider
UNII
  • InChI=1S/C23H21N3O2S2/c1-15-3-5-19(16(2)11-15)20-14-30-23(26-20)29-13-18-4-6-21(28-18)22(27)25-12-17-7-9-24-10-8-17/h3-11,14H,12-13H2,1-2H3,(H,25,27)
    Key: QWUAUCVIVCXEEL-UHFFFAOYSA-N
  • CC1=C(CCC(=O)O)\C(=C\c2[nH]c(\C=C/3\N=C(\C=C\4/NC(=O)C(=C4C)CCC(=O)O)C(=C3C)C=C)c(C=C)c2C)\NC1=O
Properties
C33H34N4O6
Molar mass 582.6536
Density 1.3±0.1 g/cm3[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Graphium sarpedon which contains pterobilin

Pterobilin is a blue bile pigment found in Nessaea spp.,[2] Graphium agamemnon, G. antiphates, G. doson, and G. sarpedon.[3] It is one of only a few blue pigments found in any animal species, as most animals use iridescence to create blue coloration. Other blue pigments of animal origin include phorcabilin, used by other butterflies in Graphium and Papilio (specifically P. phorcas and P. weiskei), and sarpedobilin, which is used by Graphium sarpedon.[3]

Synthetic pathways

Pterobilin 1 is a chemical precursor to sarpedobilin 3 in the larvae of the fourth instar of G. sarpedon through a double cyclisation of the central vinyl groups of the adjacent nitrogens.[4] In the butterfly species Pieris brassicae, it is produced starting with acetate and then proceeding to glycin, then δ-aminolevulinic acid, then coproporphyrinogen III, to protoporphyrin IX and finally into pterobilin.[4][5]

Pterobilin 1 can be phototransformed into Pterobilin 2 and 3 in vitro.[4] Pterobilin 1 can also be thermally rearranged in vitro into phorcabilin 2.[4][6]

Biochemical roles

Pterobilin in P. brassicae[7][8][9] is thought to play a role in photoreception for the different instars for metering diapause.[4] In adult P. brassicae butterflies the compound is thought to have a role in heat transfer,[10] as the wing scales where pterobilin accumulates differ morphologically in a way that would facilitate photoreception.[4]

See also


References

  1. ^ "Pterobilin (Found by synonym)". ChemSpider. Retrieved 21 January 2020.
  2. ^ Vane-Wright, Richard I. (22 February 1979). "The coloration, identification and phylogeny of Nessaea butterflies (Lepidoptera : Nymphalidae)" (PDF). Bulletin of the British Museum (Natural History). Entomology Series. 38 (2): 27–56. OCLC 5510989. Retrieved 8 February 2018.
  3. ^ a b Simonis, Priscilla; Serge, Berthier (30 March 2012). "Chapter number 1 How Nature produces blue color". In Massaro, Alessandro (ed.). Photonic Crystals - Introduction, Applications and Theory. InTech. ISBN 978-953-51-0431-5. Retrieved 8 February 2018.
  4. ^ a b c d e f Bois-Choussy, Michèle; Barbier, Michel (10 February 1983). "Biosynthesis of the bile pigment sarpedobilin from [14C]pterobilin by Papilio sarpedon (lepidoptera)". Biochemical and Biophysical Research Communications. 100 (3). Elsevier: 779–782. doi:10.1016/0006-291X(83)91029-X. ISSN 0006-291X. OCLC 4922987039. PMID 6838551.
  5. ^ Rüdiger, W., Klose, W., Vuillaume, M., and Barbier, M. (1969). Experimentia, 25, 487-488.
  6. ^ Bois-Choussy, Michèle; Barbier, Michel (1978). Heterocycles 9, 677-690.
  7. ^ Barbier, Michel, Bergerard, J., Hurpin, B., and Vuillaume, M. (1970). Comptes rendus de l'Académie des Sciences Paris, 271, 342-345.
  8. ^ Vuillaume, M., and Bergerard, J. (1978). Chronobiologia, 5, 286-292.
  9. ^ Vuillaume, M., and Dattée, Y. (1980). Archives de zoologie expérimentale et générale, 121, 159-164.
  10. ^ Allyn, A. C., Barbier, Michel, Bois-Choussy, Michèle, and Rothschild, M. (1981). Antenna, Londres, 29-31.