Rectenna

From Wikipedia, the free encyclopedia
Jump to: navigation, search
A rectenna is also a scanning and tracking array in the Star Wars universe.

A rectenna is a rectifying antenna, a special type of antenna that is used to convert microwave energy into direct current electricity. They are used in wireless power transmission systems that transmit power by radio waves. A simple rectenna element consists of a dipole antenna with an RF diode connected across the dipole elements. The diode rectifies the AC current induced in the antenna by the microwaves, to produce DC power, which powers a load connected across the diode. Schottky diodes are usually used because they have the lowest voltage drop and highest speed and therefore have the lowest power losses due to conduction and switching. Large rectennas consist of an array of many such dipole elements.

The rectenna was invented in 1964 and patented in 1969[1] by US electrical engineer William C. Brown, who demonstrated it with a model helicopter powered by microwaves transmitted from the ground, received by an attached rectenna.[2] Since the 1970s, one of the major motivations for rectenna research has been to develop a receiving antenna for proposed solar power satellites, which would harvest energy from sunlight in space with solar cells and beam it down to Earth as microwaves to huge rectenna arrays.[3] A proposed military application is to power drone reconnaissance aircraft with microwaves beamed from the ground, allowing them to stay aloft for long periods. In recent years interest has turned to using rectennas as power sources for small wireless microelectronic devices. The largest current use of rectennas is in RFID tags, proximity cards and contactless smart cards, which contain an integrated circuit (IC) which is powered by a small rectenna element. When the device is brought near an electronic reader unit, radio waves from the reader are received by the rectenna, powering up the IC, which transmits its data back to the reader.

Radio frequency rectennas[edit]

The simplest crystal radio receiver, employing an antenna and a demodulating diode (rectifier), is actually a rectenna - although it discards the DC component before sending the signal to the earphones. People living near strong radio transmitters would occasionally discover that with a long receiving antenna, they could get enough electric power to light a light bulb.[citation needed]

However this example uses only one antenna having a limited capture area. A Rectenna uses multiple antennas spread over a wide area to capture more energy.

Researchers are experimenting with the use of rectennas to power sensors in remote areas.[4]

RF rectennas are used for several forms of wireless energy transfer.

Optical rectennas[edit]

Main article: Nantenna

It has been theorized that similar devices, scaled down to the proportions used in nanotechnology, could be used to convert light into electricity at greater efficiencies than what is currently possible with solar cells. This type of device is called an optical rectenna or nantenna. Theoretically, high efficiencies can be maintained as the device shrinks, but experiments funded by the United States National Renewable Energy Laboratory have so far only obtained roughly 1% efficiency while using infrared light. Nevertheless, Missouri University recently reported on work to develop low-cost, high-efficiency nantennas (optical-frequency rectennas).

Prototype devices are also being investigated in a collaboration between the University of Connecticut, Penn State Altoona and SciTech Associates Holding, Inc. thanks to a grant from the National Science Foundation.[5] With the use of Atomic layer deposition it has been suggested that conversion efficiencies of solar energy to electricity higher than 70% could be eventually achieved.

External links[edit]

References[edit]

  1. ^ US patent no. 3434678 Microwave to DC Converter William C. Brown, et al, filed May 5, 1965, granted March 25, 1969
  2. ^ "William C. Brown". Project #07-1726:Cutting the Cord. 2007-2008 Internet Science & Technology Fair, Mainland High School. 2012. Retrieved 2012-03-30. 
  3. ^ Torrey, Lee (Jul 10, 1980). "A trap to harness the sun". New Scientist (London: Read Business Information) 87 (1209): 124–127. ISSN 0262-4079. Retrieved 2012-03-30. 
  4. ^ "Over to you: Mythical electricity?". The Daily Telegraph. 2004-11-24. Retrieved 2009-06-25. 
  5. ^ http://today.uconn.edu/blog/2013/02/uconn-professors-patented-technique-key-to-new-solar-power-technology/