Rectified 5-simplexes

From Wikipedia, the free encyclopedia
  (Redirected from Rectified 5-simplex)
Jump to: navigation, search
5-simplex t0.svg
5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t1.svg
Rectified 5-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t2.svg
Birectified 5-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in A5 Coxeter plane

In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.

There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the rectified 5-simplex are located at the edge-centers of the 5-simplex. Vertices of the birectified 5-simplex are located in the triangular face centers of the 5-simplex.

Rectified 5-simplex[edit]

Rectified 5-simplex
Rectified hexateron (rix)
Type uniform 5-polytope
Schläfli symbol r{34}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4-faces 12 6 {3,3,3}Schlegel wireframe 5-cell.png
6 r{3,3,3}Schlegel half-solid rectified 5-cell.png
Cells 45 15 {3,3}Tetrahedron.png
30 r{3,3}
Faces 80 80 {3}
Edges 60
Vertices 15
Vertex figure Rectified 5-simplex verf.png
{}x{3,3}
Coxeter group A5, [34], order 720
Dual
Base point (0,0,0,0,1,1)
Circumradius 0.645497
Properties convex, isogonal isotoxal

In five dimensional geometry, a rectified 5-simplex, is a uniform 5-polytope with 15 vertices, 60 edges, 80 triangular faces, 45 cells (15 tetrahedral, and 30 octahedral), and 12 4-faces (6 5-cell and 6 rectified 5-cells). It is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The rectified 5-simplex, 031, is second in a dimensional series of uniform polytopes, expressed by Coxeter as 13k series. The fifth figure is a Euclidean honeycomb, 331, and the final is a noncompact hyperbolic honeycomb, 431. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k31 dimensional figures
n 4 5 6 7 8 9
Coxeter
group
A3×A1 A5 D6 E7 {\tilde{E}}_{7} = E7+ E7++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
Symmetry
(order)
[3-1,3,1]
(48)
[30,3,1]
(720)
[31,3,1]
(23,040)
[32,3,1]
(2,903,040)
[33,3,1]
(∞)
[34,3,1]
(∞)
Graph Tetrahedral prism.png 5-simplex t1.svg Demihexeract ortho petrie.svg Up2 2 31 t0 E7.svg
Name −131 031 131 231 331 431

Alternate names[edit]

  • Rectified hexateron (Acronym: rix) (Jonathan Bowers)

Coordinates[edit]

The vertices of the rectified 5-simplex can be more simply positioned on a hyperplane in 6-space as permutations of (0,0,0,0,1,1) or (0,0,1,1,1,1). These construction can be seen as facets of the rectified 6-orthoplex or birectified 6-cube respectively.

Images[edit]

orthographic projections
Ak
Coxeter plane
A5 A4
Graph 5-simplex t1.svg 5-simplex t1 A4.svg
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph 5-simplex t1 A3.svg 5-simplex t1 A2.svg
Dihedral symmetry [4] [3]
Stereographic projection
Rectified Hexateron.png
Stereographic projection of spherical form

Birectified 5-simplex[edit]

Birectified 5-simplex
Birectified hexateron (dot)
Type uniform 5-polytope
Schläfli symbol 2r{34}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
4-faces 12 12 r{3,3,3}Schlegel half-solid rectified 5-cell.png
Cells 60 30 {3,3}Tetrahedron.png
30 r{3,3}Uniform polyhedron-33-t1.png
Faces 120 120 {3}
Edges 90
Vertices 20
Vertex figure Birectified hexateron verf.png
{3}x{3}
Coxeter group A5×2, [[34]], order 1440
Dual {{{dot-dual}}}
Base point (0,0,0,1,1,1)
Circumradius 0.866025
Properties convex, isogonal isotoxal

The birectified 5-simplex is isotopic, with all 12 of its facets as rectified 5-cells. It has 20 vertices, 90 edges, 120 triangular faces, 60 cells (30 tetrahedral, and 30 octahedral). It is also called 02,2 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png.

Alternate names[edit]

  • Birectified hexateron
  • dodecateron (Acronym: dot) (For 12-facetted polyteron) (Jonathan Bowers)

Construction[edit]

The birectified 5-simplex is the intersection of two regular 5-simplices in dual configuration. As such, it is also the intersection of a 6-cube with the hyperplane that bisects the hexeract's long diagonal orthogonally. In this sense it is the 5-dimensional analog of the regular hexagon, octahedron, and bitruncated 5-cell. This characterization yields simple coordinates for the vertices of a birectified 5-cell in 6-space: the 20 distinct permutations of (1,1,1,−1,−1,−1).

The vertices of the birectified 5-simplex can also be positioned on a hyperplane in 6-space as permutations of (0,0,0,1,1,1). This construction can be seen as facets of the birectified 6-orthoplex.

Images[edit]

orthographic projections
Ak
Coxeter plane
A5 A4
Graph 5-simplex t2.svg 5-simplex t2 A4.svg
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph 5-simplex t2 A3.svg 5-simplex t2 A2.svg
Dihedral symmetry [4] [[3]]=[6]
Stereographic projection
Birectified Hexateron.png

Related polytopes[edit]

k_22 polytopes[edit]

The birectified 5-simplex, 022, is second in a dimensional series of uniform polytopes, expressed by Coxeter as k22 series. The birectified 5-simplex is the vertex figure for the third, the 122. The fourth figure is a Euclidean honeycomb, 222, and the final is a noncompact hyperbolic honeycomb, 322. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k22 figures in n dimensions
n 4 5 6 7 8
Coxeter
group
A22 A5 E6 {\tilde{E}}_{6}=E6+ E6++
Coxeter
diagram
CDel nodes.pngCDel 3ab.pngCDel nodes 11.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry
(order)
[[32,2,-1]]
(72)
[[32,2,0]]
(1440)
[[32,2,1]]
(103,680)
[[32,2,2]]
(∞)
[[32,2,3]]
(∞)
Graph 3-3 duoprism.png 5-simplex t2.svg Up 1 22 t0 E6.svg
Name −122 022 122 222 322

Isotopics polytopes[edit]

Isotopic uniform truncated simplices
Dim. 2 3 4 5 6 7 8
Name t{3}
Hexagon
r{3,3}
Octahedron
2t{3,3,3}
Decachoron
2r{3,3,3,3}
Dodecateron
3t{3,3,3,3,3}
Tetradecapeton
3r{3,3,3,3,3,3}
Hexadecaexon
4t{3,3,3,3,3,3,3}
Octadecazetton
Coxeter
diagram
CDel branch 11.png CDel node 1.pngCDel split1.pngCDel nodes.png CDel branch 11.pngCDel 3ab.pngCDel nodes.png CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
Images Truncated triangle.png 3-simplex t1.svgUniform polyhedron-33-t1.png 4-simplex t12.svgSchlegel half-solid bitruncated 5-cell.png 5-simplex t2.svg5-simplex t2 A3.svg 6-simplex t23.svg6-simplex t23 A5.svg 7-simplex t3.svg7-simplex t3 A5.svg 8-simplex t34.svg8-simplex t34 A7.svg
Facets {3} Regular polygon 3 annotated.svg t{3,3} Uniform polyhedron-33-t01.png r{3,3,3} Schlegel half-solid rectified 5-cell.png 2t{3,3,3,3} 5-simplex t12.svg 2r{3,3,3,3,3} 6-simplex t2.svg 3t{3,3,3,3,3,3} 7-simplex t23.svg

Related uniform 5-polytopes[edit]

This polytope is the vertex figure of the 6-demicube, and the edge figure of the uniform 231 polytope.

It is also one of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

5-simplex t0.svg
t0
5-simplex t1.svg
t1
5-simplex t2.svg
t2
5-simplex t01.svg
t0,1
5-simplex t02.svg
t0,2
5-simplex t12.svg
t1,2
5-simplex t03.svg
t0,3
5-simplex t13.svg
t1,3
5-simplex t04.svg
t0,4
5-simplex t012.svg
t0,1,2
5-simplex t013.svg
t0,1,3
5-simplex t023.svg
t0,2,3
5-simplex t123.svg
t1,2,3
5-simplex t014.svg
t0,1,4
5-simplex t024.svg
t0,2,4
5-simplex t0123.svg
t0,1,2,3
5-simplex t0124.svg
t0,1,2,4
5-simplex t0134.svg
t0,1,3,4
5-simplex t01234.svg
t0,1,2,3,4

References[edit]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 5D, uniform polytopes (polytera) o3x3o3o3o - rix, o3o3x3o3o - dot

External links[edit]