Rectified 6-simplexes

From Wikipedia, the free encyclopedia
  (Redirected from Rectified 6-simplex)
Jump to: navigation, search
6-simplex t0.svg
6-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-simplex t1.svg
Rectified 6-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-simplex t2.svg
Birectified 6-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in A6 Coxeter plane

In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.

There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the 6-simplex. Vertices of the birectified 6-simplex are located in the triangular face centers of the 6-simplex.

Rectified 6-simplex[edit]

Rectified 6-simplex
Type uniform polypeton
Schläfli symbol t1{35}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Elements

f5 = 14, f4 = 63, C = 140, F = 175, E = 105, V = 21
(χ=0)

Coxeter group A6, [35], order 5040
Bowers name
and (acronym)
Rectified heptapeton
(ril)
Vertex figure 5-cell prism
Circumradius 0.845154
Properties convex, isogonal

Alternate names[edit]

  • Rectified heptapeton (Acronym: ril) (Jonathan Bowers)

Coordinates[edit]

The vertices of the rectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on facets of the rectified 7-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph 6-simplex t1.svg 6-simplex t1 A5.svg 6-simplex t1 A4.svg
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph 6-simplex t1 A3.svg 6-simplex t1 A2.svg
Dihedral symmetry [4] [3]

Birectified 6-simplex[edit]

Birectified 6-simplex
Type uniform 6-polytope
Schläfli symbol t2{3,3,3,3,3}
Coxeter symbol 032
Coxeter diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces 14 total:
7 t1{3,3,3,3}
7 t2{3,3,3,3}
4-faces 84
Cells 245
Faces 350
Edges 210
Vertices 35
Vertex figure {3}x{3,3}
Petrie polygon Heptagon
Coxeter groups A6, [3,3,3,3,3]
Properties convex

Alternate names[edit]

  • Birectified heptapeton (Acronym: bril) (Jonathan Bowers)

Coordinates[edit]

The vertices of the birectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,1,1). This construction is based on facets of the birectified 7-orthoplex.

Images[edit]

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph 6-simplex t2.svg 6-simplex t2 A5.svg 6-simplex t2 A4.svg
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph 6-simplex t2 A3.svg 6-simplex t2 A2.svg
Dihedral symmetry [4] [3]

Related uniform 6-polytopes[edit]

The rectified 6-simplex polytope is the vertex figure of the 7-demicube, and the edge figure of the uniform 241 polytope.

These polytopes are a part of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.

6-simplex t0.svg
t0
6-simplex t1.svg
t1
6-simplex t2.svg
t2
6-simplex t01.svg
t0,1
6-simplex t02.svg
t0,2
6-simplex t12.svg
t1,2
6-simplex t03.svg
t0,3
6-simplex t13.svg
t1,3
6-simplex t23.svg
t2,3
6-simplex t04.svg
t0,4
6-simplex t14.svg
t1,4
6-simplex t05.svg
t0,5
6-simplex t012.svg
t0,1,2
6-simplex t013.svg
t0,1,3
6-simplex t023.svg
t0,2,3
6-simplex t123.svg
t1,2,3
6-simplex t014.svg
t0,1,4
6-simplex t024.svg
t0,2,4
6-simplex t124.svg
t1,2,4
6-simplex t034.svg
t0,3,4
6-simplex t015.svg
t0,1,5
6-simplex t025.svg
t0,2,5
6-simplex t0123.svg
t0,1,2,3
6-simplex t0124.svg
t0,1,2,4
6-simplex t0134.svg
t0,1,3,4
6-simplex t0234.svg
t0,2,3,4
6-simplex t1234.svg
t1,2,3,4
6-simplex t0125.svg
t0,1,2,5
6-simplex t0135.svg
t0,1,3,5
6-simplex t0235.svg
t0,2,3,5
6-simplex t0145.svg
t0,1,4,5
6-simplex t01234.svg
t0,1,2,3,4
6-simplex t01235.svg
t0,1,2,3,5
6-simplex t01245.svg
t0,1,2,4,5
6-simplex t012345.svg
t0,1,2,3,4,5

Notes[edit]

References[edit]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 6D, uniform polytopes (polypeta) o3x3o3o3o3o - ril, o3x3o3o3o3o - bril

External links[edit]