Samarium: Difference between revisions
Reverting possible vandalism by Special:Contributions/209.175.23.2 to version by Nergaal. False positive? report it. Thanks, User:ClueBot. (115178) (Bot) |
|||
Line 88: | Line 88: | ||
Samarium has no known biological role, but is said to stimulate the [[metabolism]].{{Fact|date=January 2007}} |
Samarium has no known biological role, but is said to stimulate the [[metabolism]].{{Fact|date=January 2007}} |
||
[[Image:[[Image:Example.jpg]][[Image:[[Image:Example.jpg]][[Image:[[Image:Example.jpg]][[Image:[Example.jpg] |
|||
⚫ | |||
== [Headline text][[[http://www.example.com link title]][[[[Link title]]''''Italic text''''''''Bold text'''[[Media:[[Media:Example.ogg]]<nowiki>--~~~~Insert non-formatted text here--~~~~--~~~~ |
|||
---- |
|||
</nowiki>]]''''']]] == |
|||
⚫ | |||
Samarium is never found free in nature, but, like other rare earth elements, is contained in many minerals, including [[monazite]], [[bastnasite]] and [[samarskite]]; monazite (in which it occurs up to an extent of 2.8%) and bastnäsite are also used as commercial sources. [[Misch metal]] containing about 1% of samarium has long been used, but it was not until recent years that relatively pure samarium has been isolated through [[ion exchange]] processes, [[solvent extraction]] techniques, and [[electrochemical deposition]]. The metal is often prepared by electrolysis of a molten mixture of [[samarium(III) chloride]] with [[sodium chloride]] or [[calcium chloride]]<sup>[1]</sup>. Samarium can also be obtained by reducing its oxide with [[lanthanum]]. |
Samarium is never found free in nature, but, like other rare earth elements, is contained in many minerals, including [[monazite]], [[bastnasite]] and [[samarskite]]; monazite (in which it occurs up to an extent of 2.8%) and bastnäsite are also used as commercial sources. [[Misch metal]] containing about 1% of samarium has long been used, but it was not until recent years that relatively pure samarium has been isolated through [[ion exchange]] processes, [[solvent extraction]] techniques, and [[electrochemical deposition]]. The metal is often prepared by electrolysis of a molten mixture of [[samarium(III) chloride]] with [[sodium chloride]] or [[calcium chloride]]<sup>[1]</sup>. Samarium can also be obtained by reducing its oxide with [[lanthanum]]. |
||
I hate wikipedia it suckz ballz |
|||
== Compounds == |
== Compounds == |
Revision as of 19:03, 12 December 2007
Template:Elementbox header Template:Elementbox series Template:Elementbox periodblock Template:Elementbox appearance img Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox densityliq gpcm3mp Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies4 Template:Elementbox atomicradius pm Template:Elementbox atomicradiuscalc pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmm Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmk Template:Elementbox speedofsound rodmpsat20 Template:Elementbox youngsmodulus gpa Template:Elementbox shearmodulus gpa Template:Elementbox bulkmodulus gpa Template:Elementbox poissonratio Template:Elementbox vickershardness mpa Template:Elementbox brinellhardness mpa Template:Elementbox cas number Template:Elementbox isotopes begin Template:Elementbox isotopes stable |- ! style="text-align:right;" | 146Sm | style="text-align:center;" | syn | style="text-align:right;" | 1.03×108y | α | style="text-align:right;" | 142Nd |- ! style="text-align:right;" | 147Sm | style="text-align:right;" | 14.99% | style="text-align:right;" | 1.06×1011y | α | style="text-align:right;" | 143Nd |- ! style="text-align:right;" | 148Sm | style="text-align:right;" | 11.24% | style="text-align:right;" | 7×1015y | α | style="text-align:right;" | 144Nd |- ! style="text-align:right;" | 149Sm | style="text-align:right;" | 13.82% | style="text-align:right;" | >2×1015 y | α | style="text-align:right;" | 145Nd Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes end Template:Elementbox footer
Samarium (Template:PronEng) is a chemical element in the periodic table that has the symbol Sm and atomic number 62.
Notable characteristics
Samarium is a rare earth metal, with a bright silver luster, that is reasonably stable in air; it ignites in air at 150 °C. Even with long-term storage under mineral oil, samarium is gradually oxidized, with a grayish-yellow powder of the oxide-hydroxide being formed. Three crystal modifications of the metal also exist, with transformations at 734 and 922 °C.
Applications
Uses of Samarium include:
- Carbon-arc lighting for the motion picture industry (together with other rare earth metals).
- CaF2 crystals for use in optical masers or lasers.
- As a neutron absorber in nuclear reactors.
- For alloys and headphones.
- Samarium-Cobalt magnets; SmCo5 and Sm2Co17 are used in making permanent magnet materials that have high resistance to demagnetization when compared to other permanent magnet materials. These materials have high coercivities and intrinsic coercivities. Samarium-cobalt combinations have recently found use in high-end magnetic pickups for guitars and related musical instruments.
- Samarium(II) iodide is used as a chemical reagent in organic synthesis, for example in the Barbier reaction.
- Samarium oxide is used in optical glass to absorb infrared light.
- Samarium compounds act as sensitizers for phosphors excited in the infrared.
- Samarium oxide is a catalyst for the dehydration and dehydrogenation of ethanol.
- Radioactive Samarium-153 is used in medicine to treat the severe pain associated with cancers that have spread to bone. The drug is called "Quadramet".
History
Samarium was first discovered spectroscopically in 1853 by Swiss chemist Jean Charles Galissard de Marignac by its sharp absorption lines in didymium, and isolated in Paris in 1879 by French chemist Paul Émile Lecoq de Boisbaudran from the mineral samarskite ((Y,Ce,U,Fe)3(Nb,Ta,Ti)5O16). Although samarskite was first found in the Urals, by the late 1870s a new deposit had been located in North Carolina, and it was from that source that the samarium-bearing didymium had originated.
The samarskite mineral was named after Vasili Samarsky-Bykhovets, the Chief of Staff (Colonel) of the Russian Corps of Mining Engineers in 1845–1861. The name of the element is derived from the name of the mineral, and thus traces back to the name Samarsky-Bykhovets. In this sense samarium was the first chemical element to be named after a living person.
Prior to the advent of ion-exchange separation technology in the 1950s, samarium had no commercial uses in pure form. However, a by-product of the fractional crystallization purification of neodymium was a mixture of samarium and gadolinium that acquired the name of "Lindsay Mix" after the company that made it. This material is thought to have been used for nuclear control rods in some of the early nuclear reactors. Nowadays, a similar commodity product goes under the name of "Samarium-Europium-Gadolinium" concentrate (or SEG concentrate). This is prepared by solvent extraction from the mixed lanthanides extracted from bastnäsite (or monazite). Since the heavier lanthanides have the greater affinity for the solvent used, they are easily extracted from the bulk using relatively small proportions of solvent. Not all rare earth producers who process bastnäsite do so on large enough scale to continue onward with the separation of the components of SEG, which typically makes up only one or two percent of the original ore. Such producers will therefore be making SEG with a view to marketing it to the specialized processors. In this manner, the valuable europium content of the ore is rescued for use in phosphor manufacture. Samarium purification follows the removal of the europium. Currently, being in oversupply, samarium oxide is less expensive on a commercial scale than its relative abundance in the ore might suggest.
Biological role
Samarium has no known biological role, but is said to stimulate the metabolism.[citation needed]
[[Image:[[Image:[[Image:[[Image:[Example.jpg]
[Headline text][[link title][[Link title'Italic text'''Bold text[[Media:Media:Example.ogg--~~~~Insert non-formatted text here--~~~~--~~~~ ---- ]]]]]
]]]]]]]]== Occurrence == Samarium is never found free in nature, but, like other rare earth elements, is contained in many minerals, including monazite, bastnasite and samarskite; monazite (in which it occurs up to an extent of 2.8%) and bastnäsite are also used as commercial sources. Misch metal containing about 1% of samarium has long been used, but it was not until recent years that relatively pure samarium has been isolated through ion exchange processes, solvent extraction techniques, and electrochemical deposition. The metal is often prepared by electrolysis of a molten mixture of samarium(III) chloride with sodium chloride or calcium chloride[1]. Samarium can also be obtained by reducing its oxide with lanthanum. I hate wikipedia it suckz ballz
Compounds
Compounds of Samarium include:
- Fluorides: SmF2, SmF3
- Chlorides: SmCl2, SmCl3
- Bromides: SmBr2, SmBr3
- Iodides: SmI2, SmI3
- Oxides: Sm2O3
- Sulfides: Sm2S3
- Selenides: Sm2Se3
- Tellurides: Sm2Te3
See also samarium compounds.
Isotopes
Naturally occurring samarium is composed of 4 stable isotopes, 144Sm, 150Sm, 152Sm and 154Sm, and 3 extremely long-lived radioisotopes, 147Sm (1.06×1011y), 148Sm (7×1015y) and 149Sm (>2×1015y), with 152Sm being the most abundant (26.75% natural abundance).
151Sm has a halflife of 90 years, and 145Sm has a halflife of 340 days. All of the remaining radioisotopes have half-lives that are less than 2 days, and the majority of these have half-lives that are less than 48 seconds. This element also has 5 meta states with the most stable being 141mSm (t½ 22.6 minutes), 143m1Sm (t½ 66 seconds) and 139mSm (t½ 10.7 seconds).
The primary decay mode before the most abundant stable isotope, 152Sm, is electron capture, and the primary mode after is beta minus decay. The primary decay products before 152Sm are element Pm (promethium) isotopes, and the primary products after are element Eu (europium) isotopes.
Natural Samarium has an activity of 128 Bq/g.
Precautions
As with the other lanthanides, samarium compounds are of low to moderate toxicity, although their toxicity has not been investigated in detail.
References
- N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, UK, 1984.