Jump to content

Septenary: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Irrational Numbers: Remove space in percent per WP:PERCENT + general fixes using AWB (8455)
No edit summary
Line 3: Line 3:
{{Numeral systems}}
{{Numeral systems}}
The '''septenary''' [[numeral system]] is the [[base (exponentiation)|base]]-{{Num|7}} number system, and uses the digits 0-6.
The '''septenary''' [[numeral system]] is the [[base (exponentiation)|base]]-{{Num|7}} number system, and uses the digits 0-6.

==The first 20 counting numbers in base 7==
{| class="wikitable"
|-
! Base 10 !! Base 7 |-
! 1
| 1 |-
! 2
| 2 |-
! 3
| 3 |-
! 4
| 4 |-
! 5
| 5 |-
! 6
| 6 |-
! 7
| 10 |-
! 8
| 11 |-
! 9
| 12 |-
! 10
| 13 |-
! 11
| 14 |-
! 12
| 15 |-
! 13
| 16 |-
! 14
| 20 |-
! 15
| 21 |-
! 16
| 22 |-
! 17
| 23 |-
! 18
| 24 |-
! 19
| 25 |-
! 20
| 26 |}<ref>The first 1000 counting numbers in base[http://scientific-library.com/Documents/73484877 7]-[http://scientific-library.com/ scientific-library.com]</ref>





==Multiplication table==
==Multiplication table==
Line 122: Line 170:


*In the online RPG [[Kingdom of Loathing]], the Dwarven miners use a base-7 number system.
*In the online RPG [[Kingdom of Loathing]], the Dwarven miners use a base-7 number system.

==References==
<references/>

==External links==
* [http://scientific-library.com/Documents/73484877 The first 1000 counting numbers in base 7]-[http://scientific-library.com/ scientific-library.com]


[[Category:Positional numeral systems]]
[[Category:Positional numeral systems]]

Revision as of 08:05, 13 October 2012

The septenary numeral system is the base-7 number system, and uses the digits 0-6.

The first 20 counting numbers in base 7

Base 10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 }[1]



Multiplication table

1 2 3 4 5 6 10
2 4 6 11 13 15 20
3 6 12 15 21 24 30
4 11 15 22 26 33 40
5 13 21 26 34 42 50
6 15 24 33 42 51 60
10 20 30 40 50 60 100

Fractions

Fractions expressed in septenary will repeat a sequence of digits unless the denominator is a power of seven. Few fractions can be expressed in a finite number of digits:

Decimal Septimal (periodic part)
1/2 1/2 = 0.3
1/3 1/3 = 0.2
1/4 1/4 = 0.15
1/5 1/5 = 0.1254
1/6 1/6 = 0.1
1/7 1/10 = 0.1
1/8 1/11 = 0.06
1/9 1/12 = 0.053
1/10 1/13 = 0.0462
1/12 1/15 = 0.04
1/14 1/20 = 0.03
1/15 1/21 = 0.0316
1/16 1/22 = 0.03
1/18 1/24 = 0.025
1/19 1/25 = 0.024
1/20 1/26 = 0.0231
1/21 1/30 = 0.02
1/24 1/33 = 0.02
... ...
1/49 1/100 = 0.01

Irrational Numbers

Algebraic irrational number In decimal In septenary
√2 (the length of the diagonal of a unit square) 1.41421356237309... (≈ 1.414) 1.262034545211232611 ... (≈ 1.262)
√3 (the length of the diagonal of a unit cube, or twice the height of an equilateral triangle of unit side) 1.73205080756887... (≈ 1.732) 1.506044021410166456 ... (≈ 1.506 ≈ 1.5)
√5 (the length of the diagonal of a 1×2 rectangle) 2.2360679774997... (≈ 2.236) 2.143654106250351 ... (≈ 2.144)
φ (phi, the golden ratio = (1+√5)2) 1.6180339887498... (≈ 1.618) 1.42166203646016... (≈ 1.422)
Transcendental irrational number In decimal In septenary
π (pi, the ratio of circumference to diameter) 3.1415926535898... (≈ 3.1416) 3.06636514320361341... (≈ 3.1)
e (the base of the natural logarithm) 2.718281828459045... (≈ 2.718) 2.50124106542265... (≈ 2.5)

Note: One feature of this system is that 3.1 (= 22/7) approximates π with a relative error of 0.04%.

In fiction

  • The Halo 3 Alternate Reality Game "IRIS" used a countdown clock in base-7.

References

  1. ^ The first 1000 counting numbers in base7-scientific-library.com