P-adic number: Difference between revisions
Dark Charles (talk | contribs) This information was already taken care of in the first sentence. |
|||
Line 7: | Line 7: | ||
More formally, for a given prime {{mvar|p}}, the [[field (mathematics)|field]] '''Q'''<sub>''p''</sub> of {{mvar|p}}-adic numbers is a [[complete space|completion]] of the [[rational number]]s. The field '''Q'''<sub>''p''</sub> is also given a [[topological space|topology]] derived from a [[metric space|metric]], which is itself derived from an [[p-adic order|alternative valuation]] on the rational numbers. This metric space is [[completeness (topology)|complete]] in the sense that every [[Cauchy sequence]] converges to a point in '''Q'''<sub>''p''</sub>. This is what allows the development of calculus on '''Q'''<sub>''p''</sub>, and it is the interaction of this analytic and algebraic structure which gives the {{mvar|p}}-adic number systems their power and utility. |
More formally, for a given prime {{mvar|p}}, the [[field (mathematics)|field]] '''Q'''<sub>''p''</sub> of {{mvar|p}}-adic numbers is a [[complete space|completion]] of the [[rational number]]s. The field '''Q'''<sub>''p''</sub> is also given a [[topological space|topology]] derived from a [[metric space|metric]], which is itself derived from an [[p-adic order|alternative valuation]] on the rational numbers. This metric space is [[completeness (topology)|complete]] in the sense that every [[Cauchy sequence]] converges to a point in '''Q'''<sub>''p''</sub>. This is what allows the development of calculus on '''Q'''<sub>''p''</sub>, and it is the interaction of this analytic and algebraic structure which gives the {{mvar|p}}-adic number systems their power and utility. |
||
The {{mvar|p}} in ''p-adic'' is a [[variable (mathematics)|variable]] and may be replaced with a [[constant (mathematics)|constant]] (yielding, for instance, "the 2-adic numbers") or another ''placeholder variable'' (for expressions such as "the ℓ-adic numbers"). |
|||
== ''p''-adic expansions == |
== ''p''-adic expansions == |
Revision as of 20:32, 20 July 2013
In mathematics the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, p-adic numbers have the interesting property that they are said to be close when their difference is divisible by a high power of p – the higher the power the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.[1]
p-adic numbers were first described by Kurt Hensel in 1897,[2] though with hindsight [from whom?] some of Kummer's earlier work can be interpreted as implicitly using p-adic numbers. [according to whom?] The p-adic numbers were motivated primarily by an attempt to bring the ideas and techniques of power series methods into number theory. Their influence now extends far beyond this. For example, the field of p-adic analysis essentially provides an alternative form of calculus.
More formally, for a given prime p, the field Qp of p-adic numbers is a completion of the rational numbers. The field Qp is also given a topology derived from a metric, which is itself derived from an alternative valuation on the rational numbers. This metric space is complete in the sense that every Cauchy sequence converges to a point in Qp. This is what allows the development of calculus on Qp, and it is the interaction of this analytic and algebraic structure which gives the p-adic number systems their power and utility.
p-adic expansions
When dealing with natural numbers, if we take p to be a fixed prime number, then any positive integer can be written as a base p expansion in the form
where the ai are integers in {0, … , p − 1}. For example, the binary expansion of 35 is 1·25 + 0·24 + 0·23 + 0·22 + 1·21 + 1·20, often written in the shorthand notation 1000112.
The familiar approach to extending this description to the larger domain of the rationals (and, ultimately, to the reals) is to use sums of the form:
A definite meaning is given to these sums based on Cauchy sequences, using the absolute value as metric. Thus, for example, 1/3 can be expressed in base 5 as the limit of the sequence 0.1313131313...5. In this formulation, the integers are precisely those numbers for which ai = 0 for all i < 0.
With p-adic numbers, on the other hand, we choose to extend the base p expansions in a different way. Because in the p-adic world high positive powers of p are small and high negative powers are large, we consider infinite sums of the form:
where k is some (not necessarily positive) integer. With this approach we obtain the p-adic expansions of the p-adic numbers. Those p-adic numbers for which ai = 0 for all i < 0 are also called the p-adic integers.
As opposed to real number expansions which extend to the right as sums of ever smaller, increasingly negative powers of the base p, p-adic numbers may expand to the left forever, a property that can often be true for the p-adic integers. For example, consider the p-adic expansion of 1/3 in base 5. It can be shown to be …13131325, i.e., the limit of the sequence 25, 325, 1325, 31325, 131325, 3131325, 13131325, … :
Multiplying this infinite sum by 3 in base 5 gives …00000015. As there are no negative powers of 5 in this expansion of 1/3 (i.e. no numbers to the right of the decimal point), we see that 1/3 satisfies the definition of being a p-adic integer in base 5.
More formally, the p-adic expansions can be used to define the field Qp of p-adic numbers while the p-adic integers form a subring of Qp, denoted Zp. (Not to be confused with the ring of integers modulo p which is also sometimes written Zp. To avoid ambiguity, Z/pZ or Z/(p) are often used to represent the integers modulo p.)
While it is possible to use the approach above to define p-adic numbers and explore their properties, just as in the case of real numbers other approaches are generally preferred. Hence we want to define a notion of infinite sum which makes these expressions meaningful, and this is most easily accomplished by the introduction of the p-adic metric. Two different but equivalent solutions to this problem are presented in the Constructions section below.
Notation
There are several different conventions for writing p-adic expansions. So far this article has used a notation for p-adic expansions in which powers of p increase from right to left. With this right-to-left notation the 3-adic expansion of 1⁄5, for example, is written as
When performing arithmetic in this notation, digits are carried to the left. It is also possible to write p-adic expansions so that the powers of p increase from left to right, and digits are carried to the right. With this left-to-right notation the 3-adic expansion of 1⁄5 is
p-adic expansions may be written with other sets of digits instead of {0, 1, …, p − 1}. For example, the 3-adic expansion of 1/5 can be written using balanced ternary digits {1,0,1} as
In fact any set of p integers which are in distinct residue classes modulo p may be used as p-adic digits. In number theory, Teichmüller digits are sometimes used.
Constructions
Analytic approach
p = 2 | ← distance = 1 → | ||||||||
De- ci- mal |
Bi- nary |
← d = ½ → | ← d = ½ → | ||||||
---|---|---|---|---|---|---|---|---|---|
‹ d=¼ › | ‹ d=¼ › | ‹ d=¼ › | ‹ d=¼ › | ||||||
‹⅛› | ‹⅛› | ‹⅛› | ‹⅛› | ‹⅛› | ‹⅛› | ‹⅛› | ‹⅛› | ||
................................................ | |||||||||
17 | 10001 | J | |||||||
16 | 10000 | J | |||||||
15 | 1111 | L | |||||||
14 | 1110 | L | |||||||
13 | 1101 | L | |||||||
12 | 1100 | L | |||||||
11 | 1011 | L | |||||||
10 | 1010 | L | |||||||
9 | 1001 | L | |||||||
8 | 1000 | L | |||||||
7 | 111 | L | |||||||
6 | 110 | L | |||||||
5 | 101 | L | |||||||
4 | 100 | L | |||||||
3 | 11 | L | |||||||
2 | 10 | L | |||||||
1 | 1 | L | |||||||
0 | 0…000 | L | |||||||
−1 | 1…111 | J | |||||||
−2 | 1…110 | J | |||||||
−3 | 1…101 | J | |||||||
−4 | 1…100 | J | |||||||
Dec | Bin | ················································ | |||||||
|
2-adic ( p = 2 ) arrangement of integers, from left to right. This shows a hierarchical subdivision pattern common for ultrametric spaces. Points within a distance 1/8 are grouped in one colored strip. A pair of strips within a distance 1/4 has the same chroma, four strips within a distance 1/2 have the same hue. The hue is determined by the least significant bit, the saturation – by the next (21) bit, and the brightness depends on the value of 22 bit. Bits (digit places) which are less significant for the usual metric are more significant for the p-adic distance. |
The real numbers can be defined as equivalence classes of Cauchy sequences of rational numbers; this allows us to, for example, write 1 as 1.000… = 0.999… . The definition of a Cauchy sequence relies on the metric chosen, though, so if we choose a different one, we can construct numbers other than the real numbers. The usual metric which yields the real numbers is called the Euclidean metric.
For a given prime p, we define the p-adic absolute value in Q as follows: for any non-zero rational number x, there is a unique integer n allowing us to write x = pn(a/b), where neither of the integers a and b is divisible by p. Unless the numerator or denominator of x in lowest terms contains p as a factor, n will be 0. Now define |x|p = p−n. We also define |0|p = 0.
For example with x = 63/550 = 2−1·32·5−2·7·11−1
This definition of |x|p has the effect that high powers of p become "small". By the fundamental theorem of arithmetic, for a given non-zero rational number x there is a unique finite set of distinct primes and a corresponding sequence of non-zero integers such that:
It then follows that for all , and for any other prime
It is a theorem of Ostrowski that each absolute value on Q is equivalent either to the Euclidean absolute value, the trivial absolute value, or to one of the p-adic absolute values for some prime p. So the only norms on Q modulo equivalence are the absolute value, the trivial absolute value and the p-adic absolute value which means that there are only as many completions (with respect to a norm) of Q.
The p-adic absolute value defines a metric dp on Q by setting
The field Qp of p-adic numbers can then be defined as the completion of the metric space (Q, dp); its elements are equivalence classes of Cauchy sequences, where two sequences are called equivalent if their difference converges to zero. In this way, we obtain a complete metric space which is also a field and contains Q.
It can be shown that in Qp, every element x may be written in a unique way as
where k is some integer such that ak ≠ 0 and each ai is in {0, …, p − 1 }. This series converges to x with respect to the metric dp.
With this absolute value, the field Qp is a local field.
Algebraic approach
In the algebraic approach, we first define the ring of p-adic integers, and then construct the field of fractions of this ring to get the field of p-adic numbers.
We start with the inverse limit of the rings Z/pnZ (see modular arithmetic): a p-adic integer is then a sequence (an)n≥1 such that an is in Z/pnZ, and if n ≤ m, then an ≡ am (mod pn).
Every natural number m defines such a sequence (an) by an = m mod pn and can therefore be regarded as a p-adic integer. For example, in this case 35 as a 2-adic integer would be written as the sequence (1, 3, 3, 3, 3, 35, 35, 35, …).
The operators of the ring amount to pointwise addition and multiplication of such sequences. This is well defined because addition and multiplication commute with the "mod" operator, see modular arithmetic.
Moreover, every sequence (an) where the first element is not 0 has an inverse. In that case, for every n, an and p are coprime, and so an and pn are relatively prime. Therefore, each an has an inverse mod pn, and the sequence of these inverses, (bn), is the sought inverse of (an). For example, consider the p-adic integer corresponding to the natural number 7; as a 2-adic number, it would be written (1, 3, 7, 7, 7, 7, 7, ...). This object's inverse would be written as an ever-increasing sequence that begins (1, 3, 7, 7, 23, 55, 55, 183, 439, 439, 1463 ...). Naturally, this 2-adic integer has no corresponding natural number.
Every such sequence can alternatively be written as a series. For instance, in the 3-adics, the sequence (2, 8, 8, 35, 35, ...) can be written as 2 + 2·3 + 0·32 + 1·33 + 0·34 + ... The partial sums of this latter series are the elements of the given sequence.
The ring of p-adic integers has no zero divisors, so we can take the field of fractions to get the field Qp of p-adic numbers. Note that in this field of fractions, every non-integer p-adic number can be uniquely written as p−n u with a natural number n and a unit in the p-adic integers u. This means that
Note that S−1 A, where is a multiplicative subset (contains the unit and closed under multiplication) of a commutative ring with unit , is an algebraic construction called the ring of fractions of by .
Properties
The ring of p-adic integers is the inverse limit of the finite rings Z/pkZ, but is nonetheless uncountable,[3] and has the cardinality of the continuum. Accordingly, the field Qp is uncountable. The endomorphism ring of the Prüfer p-group of rank n, denoted Z(p∞)n, is the ring of n×n matrices over the p-adic integers; this is sometimes referred to as the Tate module.
The p-adic numbers contain the rational numbers Q and form a field of characteristic 0. This field cannot be turned into an ordered field.
Let the topology τ on Zp be defined by taking as a basis all sets of the form {{{1}}} { n + λ pa for λ in Zp and a in N}. Then Zp is a compactification of Z, under the derived topology (it is not a compactification of Z with its usual discrete topology). The relative topology on Z as a subset of Zp is called the p-adic topology on Z.
The topology of the set of p-adic integers is that of a Cantor set; the topology of the set of p-adic numbers is that of a Cantor set minus a point (which would naturally be called infinity).[4] In particular, the space of p-adic integers is compact while the space of p-adic numbers is not; it is only locally compact. As metric spaces, both the p-adic integers and the p-adic numbers are complete.[5]
The real numbers have only a single proper algebraic extension, the complex numbers; in other words, this quadratic extension is already algebraically closed. By contrast, the algebraic closure of the p-adic numbers has infinite degree,[6] i.e. Qp has infinitely many inequivalent algebraic extensions. Also contrasting the case of real numbers, although there is a unique extension of the p-adic valuation to the algebraic closure of Qp, it is not (metrically) complete.[7][8] Its (metric) completion is called Cp or Ωp.[8][9] Here an end is reached, as Cp is algebraically closed.[8][10] Unlike the complex field, Cp is not locally compact.[9]
The field Cp is algebraically isomorphic to the field C of complex numbers, so we may regard Cp as the complex numbers endowed with an exotic metric. It should be noted that the proof of existence of such a field isomorphism relies on the axiom of choice, and does not provide an explicit example of such an isomorphism.
The p-adic numbers contain the nth cyclotomic field (n > 2) if and only if n divides p − 1.[11] For instance, the nth cyclotomic field is a subfield of Q13 if and only if n = 1, 2, 3, 4, 6, or 12. In particular, there is no multiplicative p-torsion in the p-adic numbers, if p > 2. Also, −1 is the only non-trivial torsion element in 2-adic numbers.
Given a natural number k, the index of the multiplicative group of the kth powers of the non-zero elements of Qp in the multiplicative group of Qp is finite.
The number e, defined as the sum of reciprocals of factorials, is not a member of any p-adic field; but ep is a p-adic number for all p except 2, for which one must take at least the fourth power.[12] (Thus a number with similar properties as e – namely a pth root of ep – is a member of the algebraic closure of the p-adic numbers for all p.)
For reals, the only functions whose derivative is zero are the constant functions. This is not true over Qp.[13] For instance, the function
- f: Qp → Qp, f(x) = (1/|x|p)2 for x ≠ 0, f(0) = 0,
has zero derivative everywhere but is not even locally constant at 0.
Given any elements r∞, r2, r3, r5, r7, ... where rp is in Qp (and Q∞ stands for R), it is possible to find a sequence (xn) in Q such that for all p (including ∞), the limit of xn in Qp is rp.
The field Qp is a locally compact Hausdorff space.
If is a finite Galois extension of , the Galois group is solvable. Thus, the Galois group is prosolvable.
Rational arithmetic
Eric Hehner and Nigel Horspool proposed in 1979 the use of a p-adic representation for rational numbers on computers[14] called Quote notation. The primary advantage of such a representation is that addition, subtraction, and multiplication can be done in a straightforward manner analogous to similar methods for binary integers; and division is even simpler, resembling multiplication. However, it has the disadvantage that representations can be much larger than simply storing the numerator and denominator in binary; for example, if 2n − 1 is a Mersenne prime, its reciprocal will require 2n − 1 bits to represent.
Generalizations and related concepts
The reals and the p-adic numbers are the completions of the rationals; it is also possible to complete other fields, for instance general algebraic number fields, in an analogous way. This will be described now.
Suppose D is a Dedekind domain and E is its field of fractions. Pick a non-zero prime ideal P of D. If x is a non-zero element of E, then xD is a fractional ideal and can be uniquely factored as a product of positive and negative powers of non-zero prime ideals of D. We write ordP(x) for the exponent of P in this factorization, and for any choice of number c greater than 1 we can set
Completing with respect to this absolute value |.|P yields a field EP, the proper generalization of the field of p-adic numbers to this setting. The choice of c does not change the completion (different choices yield the same concept of Cauchy sequence, so the same completion). It is convenient, when the residue field D/P is finite, to take for c the size of D/P.
For example, when E is a number field, Ostrowski's theorem says that every non-trivial non-Archimedean absolute value on E arises as some |.|P. The remaining non-trivial absolute values on E arise from the different embeddings of E into the real or complex numbers. (In fact, the non-Archimedean absolute values can be considered as simply the different embeddings of E into the fields Cp, thus putting the description of all the non-trivial absolute values of a number field on a common footing.)
Often, one needs to simultaneously keep track of all the above mentioned completions when E is a number field (or more generally a global field), which are seen as encoding "local" information. This is accomplished by adele rings and idele groups.
Local–global principle
Helmut Hasse's local–global principle is said to hold for an equation if it can be solved over the rational numbers if and only if it can be solved over the real numbers and over the p-adic numbers for every prime p. This principle holds e.g. for equations given by quadratic forms, but fails for higher polynomials in several indeterminates.
See also
Notes
- ^ F. Q. Gouvêa, A Marvelous Proof, The American Mathematical Monthly, Vol. 101, No. 3 (Mar., 1994), pp. 203–222
- ^ Hensel, Kurt (1897). "Über eine neue Begründung der Theorie der algebraischen Zahlen". Jahresbericht der Deutschen Mathematiker-Vereinigung. 6 (3): 83–88.
{{cite journal}}
: External link in
(help)|journal=
- ^ Robert (2000) Section 1.1
- ^ Robert (2000) Section 2.3
- ^ Gouvêa (2000) Corollary 3.3.8
- ^ Gouvêa (2000) Corollary 5.3.10
- ^ Gouvêa (2000) Theorem 5.7.4
- ^ a b c Cassels (1986) p.149
- ^ a b Koblitz (1980) p.13
- ^ Gouvêa (2000) Proposition 5.7.8
- ^ Gouvêa (2000) Proposition 3.4.2
- ^ Robert (2000) Section 4.1
- ^ Robert (2000) Section 5.1
- ^ Eric C. R. Hehner, R. Nigel Horspool, A new representation of the rational numbers for fast easy arithmetic. SIAM Journal on Computing 8, 124–134. 1979.
References
- Bachman, George (1964). Introduction to p-adic Numbers and Valuation Theory. Academic Press. ISBN 0-12-070268-1.
- Cassels, J. W. S. (1986). Local Fields. London Mathematical Society Student Texts. Vol. 3. Cambridge University Press. ISBN 0-521-31525-5. Zbl 0595.12006.
- Gouvêa, Fernando Q. (2000). p-adic Numbers: An Introduction (2nd ed.). Springer. ISBN 3-540-62911-4.
- Koblitz, Neal (1980). p-adic analysis: a short course on recent work. London Mathematical Society Lecture Note Series. Vol. 46. Cambridge University Press. ISBN 0-521-28060-5. Zbl 0439.12011.
- Koblitz, Neal (1996). p-adic Numbers, p-adic Analysis, and Zeta-Functions (2nd ed.). Springer. ISBN 0-387-96017-1.
- Robert, Alain M. (2000). A Course in p-adic Analysis. Springer. ISBN 0-387-98669-3.
- Steen, Lynn Arthur (1978). Counterexamples in Topology. Dover. ISBN 0-486-68735-X.
External links
- Weisstein, Eric W. "p-adic Number". MathWorld.
- "p-adic integers". PlanetMath.
- p-adic number at Springer On-line Encyclopaedia of Mathematics
- Completion of Algebraic Closure – on-line lecture notes by Brian Conrad
- An Introduction to p-adic Numbers and p-adic Analysis - on-line lecture notes by Andrew Baker, 2007
- Efficient p-adic arithmetic (slides)