Jump to content

Anemia: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
added
Line 15: Line 15:
}}
}}
<!-- Definition and Symptoms -->
<!-- Definition and Symptoms -->
'''Anemia''' ({{IPAc-en|ə|ˈ|n|iː|m|i|ə}}; [[American and British English spelling differences#ae and oe|also spelled]] '''anaemia''' and '''anæmia''') is a decrease in number of [[red blood cell]]s (RBCs) or less than the normal quantity of [[hemoglobin]] in the blood.<ref name=medterms>[http://www.medterms.com/script/main/art.asp?articlekey=15491 MedicineNet.com --> Definition of Anemia] Last Editorial Review: 12/9/2000 8:31:00 AM</ref><ref name=merriam>[http://www.merriam-webster.com/dictionary/anemia merriam-webster dictionary --> anemia] Retrieved on May 25, 2009</ref> The symptoms of anemia are often vague.<ref name=EBM2013>{{cite journal|last1=Janz|first1=TG|last2=Johnson|first2=RL|last3=Rubenstein|first3=SD|title=Anemia in the emergency department: evaluation and treatment.|journal=Emergency medicine practice|date=2013 Nov|volume=15|issue=11|pages=1-15; quiz 15-6|pmid=24716235}}</ref> That which comes on quickly usually has symptoms while that which comes on slowly often does not.<ref name=EBM2013/>
'''Anemia''' ({{IPAc-en|ə|ˈ|n|iː|m|i|ə}}; [[American and British English spelling differences#ae and oe|also spelled]] '''anaemia''' and '''anæmia''') is a decrease in number of [[red blood cell]]s (RBCs) or less than the normal quantity of [[hemoglobin]] in the blood.<ref name=medterms>[http://www.medterms.com/script/main/art.asp?articlekey=15491 MedicineNet.com --> Definition of Anemia] Last Editorial Review: 12/9/2000 8:31:00 AM</ref><ref name=merriam>[http://www.merriam-webster.com/dictionary/anemia merriam-webster dictionary --> anemia] Retrieved on May 25, 2009</ref> When anemia comes on slowly the symptoms are often vague and may include: [[fatigue|feeling tired]], weakness, [[shortness of breath]] or a poor ability to exercise.<ref name=EBM2013>{{cite journal|last1=Janz|first1=TG|last2=Johnson|first2=RL|last3=Rubenstein|first3=SD|title=Anemia in the emergency department: evaluation and treatment.|journal=Emergency medicine practice|date=2013 Nov|volume=15|issue=11|pages=1-15; quiz 15-6|pmid=24716235}}</ref> Anemia that comes on quickly often has greater symptoms which may include: [[decreased level of consciousness|confusion]], [[Syncope (medicine)|feeling like one is going to pass out]], and increased desire to drink fluids.<ref name=EBM2013/> There needs to be significant anemia before a person becomes notably [[pallor|pale]].<ref name=EBM2013/> There may be additional symptoms depending on the specific underlying cause.<ref name=EBM2013/>


<!-- Cause and Diagnosis -->
<!-- Cause and Diagnosis -->

Revision as of 19:30, 7 July 2014

Anemia
SpecialtyHematology Edit this on Wikidata

Anemia (/əˈnmiə/; also spelled anaemia and anæmia) is a decrease in number of red blood cells (RBCs) or less than the normal quantity of hemoglobin in the blood.[1][2] When anemia comes on slowly the symptoms are often vague and may include: feeling tired, weakness, shortness of breath or a poor ability to exercise.[3] Anemia that comes on quickly often has greater symptoms which may include: confusion, feeling like one is going to pass out, and increased desire to drink fluids.[3] There needs to be significant anemia before a person becomes notably pale.[3] There may be additional symptoms depending on the specific underlying cause.[3]

There are three main types of anemia, that due to blood loss, that due to decreased red blood cell production, and that due to increased red blood cell breakdown.[3] Causes of blood loss include trauma and gastrointestinal bleeding among others. Causes of decreased production include iron deficiency, a lack of vitamin B12, thalassemia and a number of neoplasms of the bone marrow among others.[3] Causes of increased breakdown include a number of genetic conditions such as sickle cell anemia, infections like malaria and some autoimmune diseases among others.[3] It can also be classified based on the size of red blood cells and amount of hemoglobin in each cell.[3] Diagnosis in men is based on a hemoglobin of less than 140g/L (14 g/dL) while in women it must be less 120g/L (12 g/dL).[3]

Unless the cause is clear dietary supplements are not recommended.[3] It is recommended that blood transfusions not be used unless hemoglobin levels are less than 60 to 80g/L (6 to 8 g/dL).[3][4] Erythropoiesis-stimulating medications are not recommended in those with mild or moderate anemia.[4]

Anemia is the most common disorder of the blood with it affecting about a quarter of people globally.[3] Iron-deficiency anemia affects nearly 1 billion.[5] It is more in females than males[5] among children, during pregnancy and in the elderly.[3] The name is derived from Ancient Greek: ἀναιμία anaimia, meaning "bloodlessness", from ἀν- an-, "not" + αἷμα haima, "blood".

Signs and symptoms

Main symptoms that may appear in anemia[6]

Anemia goes undetected in many people, and symptoms can be minor or vague. The signs and symptoms can be related to the underlying cause or the anemia itself.

Most commonly, people with anemia report feelings of weakness, or fatigue, general malaise, and sometimes poor concentration. They may also report dyspnea (shortness of breath) on exertion. In very severe anemia, the body may compensate for the lack of oxygen-carrying capability of the blood by increasing cardiac output. The patient may have symptoms related to this, such as palpitations, angina (if pre-existing heart disease is present), intermittent claudication of the legs, and symptoms of heart failure.

On examination, the signs exhibited may include pallor (pale skin, lining mucosa, conjunctiva and nail beds), but this is not a reliable sign. There may be signs of specific causes of anemia, e.g., koilonychia (in iron deficiency), jaundice (when anemia results from abnormal break down of red blood cells — in hemolytic anemia), bone deformities (found in thalassemia major) or leg ulcers (seen in sickle-cell disease).

In severe anemia, there may be signs of a hyperdynamic circulation: tachycardia (a fast heart rate), bounding pulse, flow murmurs, and cardiac ventricular hypertrophy (enlargement). There may be signs of heart failure.

Pica, the consumption of non-food items such as ice, but also paper, wax, or grass, and even hair or dirt, may be a symptom of iron deficiency, although it occurs often in those who have normal levels of hemoglobin.

Chronic anemia may result in behavioral disturbances in children as a direct result of impaired neurological development in infants, and reduced scholastic performance in children of school age. Restless legs syndrome is more common in those with iron-deficiency anemia.

Causes

Broadly, causes of anemia may be classified as impaired red blood cell (RBC) production, increased RBC destruction (hemolytic anemias), blood loss and fluid overload (hypervolemia). Several of these may interplay to cause anemia eventually. Indeed, the most common cause of anemia is blood loss, but this usually does not cause any lasting symptoms unless a relatively impaired RBC production develops, in turn most commonly by iron deficiency.[7] (See Iron deficiency anemia)

Impaired production

Increased destruction

Anemias of increased red blood cell destruction are generally classified as hemolytic anemias. These are generally featuring jaundice and elevated lactate dehydrogenase levels.

Blood loss

  • Anemia of prematurity from frequent blood sampling for laboratory testing, combined with insufficient RBC production
  • Trauma[8] or surgery, causing acute blood loss
  • Gastrointestinal tract lesions,[8] causing either acute bleeds (e.g. variceal lesions, peptic ulcers or chronic blood loss (e.g. angiodysplasia)
  • Gynecologic disturbances,[8] also generally causing chronic blood loss
  • From menstruation, mostly among young women or older women who have fibroids

Fluid overload

Fluid overload (hypervolemia) causes decreased hemoglobin concentration and apparent anemia:

  • General causes of hypervolemia include excessive sodium or fluid intake, sodium or water retention and fluid shift into the intravascular space.[13]
  • Anemia of pregnancy is induced by blood volume expansion experienced in pregnancy.

Diagnosis

Peripheral blood smear microscopy of a patient with iron-deficiency anemia

Anemia is typically diagnosed on a complete blood count. Apart from reporting the number of red blood cells and the hemoglobin level, the automatic counters also measure the size of the red blood cells by flow cytometry, which is an important tool in distinguishing between the causes of anemia. Examination of a stained blood smear using a microscope can also be helpful, and it is sometimes a necessity in regions of the world where automated analysis is less accessible.

In modern counters, four parameters (RBC count, hemoglobin concentration, MCV and RDW) are measured, allowing others (hematocrit, MCH and MCHC) to be calculated, and compared to values adjusted for age and sex. Some counters estimate hematocrit from direct measurements.

WHO's Hemoglobin thresholds used to define anemia[14] (1 g/dL = 0.6206 mmol/L)
Age or gender group Hb threshold (g/dl) Hb threshold (mmol/l)
Children (0.5–5.0 yrs) 11.0 6.8
Children (5–12 yrs) 11.5 7.1
Teens (12–15 yrs) 12.0 7.4
Women, non-pregnant (>15yrs) 12.0 7.4
Women, pregnant 11.0 6.8
Men (>15yrs) 13.0 8.1

Reticulocyte counts, and the "kinetic" approach to anemia, have become more common than in the past in the large medical centers of the United States and some other wealthy nations, in part because some automatic counters now have the capacity to include reticulocyte counts. A reticulocyte count is a quantitative measure of the bone marrow's production of new red blood cells. The reticulocyte production index is a calculation of the ratio between the level of anemia and the extent to which the reticulocyte count has risen in response. If the degree of anemia is significant, even a "normal" reticulocyte count actually may reflect an inadequate response.

If an automated count is not available, a reticulocyte count can be done manually following special staining of the blood film. In manual examination, activity of the bone marrow can also be gauged qualitatively by subtle changes in the numbers and the morphology of young RBCs by examination under a microscope. Newly formed RBCs are usually slightly larger than older RBCs and show polychromasia. Even where the source of blood loss is obvious, evaluation of erythropoiesis can help assess whether the bone marrow will be able to compensate for the loss, and at what rate.

When the cause is not obvious, clinicians use other tests, such as: ESR, ferritin, serum iron, transferrin, RBC folate level, serum vitamin B12, hemoglobin electrophoresis, renal function tests (e.g. serum creatinine) although the tests will depend on the clinical hypothesis that is being investigated.

When the diagnosis remains difficult, a bone marrow examination allows direct examination of the precursors to red cells, although is rarely used as is painful, invasive and is hence reserved for cases where severe pathology needs to be determined or excluded.

Red blood cell size

In the morphological approach, anemia is classified by the size of red blood cells; this is either done automatically or on microscopic examination of a peripheral blood smear. The size is reflected in the mean corpuscular volume (MCV). If the cells are smaller than normal (under 80 fl), the anemia is said to be microcytic; if they are normal size (80–100 fl), normocytic; and if they are larger than normal (over 100 fl), the anemia is classified as macrocytic. This scheme quickly exposes some of the most common causes of anemia; for instance, a microcytic anemia is often the result of iron deficiency. In clinical workup, the MCV will be one of the first pieces of information available, so even among clinicians who consider the "kinetic" approach more useful philosophically, morphology will remain an important element of classification and diagnosis.

Limitations of MCV include cases where the underlying cause is due to a combination of factors - such as iron deficiency (a cause of microcytosis) and vitamin B12 deficiency (a cause of macrocytosis) where the net result can be normocytic cells.

Production vs. destruction or loss

The "kinetic" approach to anemia yields arguably the most clinically relevant classification of anemia. This classification depends on evaluation of several hematological parameters, particularly the blood reticulocyte (precursor of mature RBCs) count. This then yields the classification of defects by decreased RBC production versus increased RBC destruction and/or loss. Clinical signs of loss or destruction include abnormal peripheral blood smear with signs of hemolysis; elevated LDH suggesting cell destruction; or clinical signs of bleeding, such as guaiac-positive stool, radiographic findings, or frank bleeding.

The following is a simplified schematic of this approach:

Anemia Reticulocyte production index shows inadequate production response to anemia.Reticulocyte production index shows appropriate response to anemia = ongoing hemolysis or blood loss without RBC production problem. No clinical findings consistent with hemolysis or blood loss: pure disorder of production.Clinical findings and abnormal MCV: hemolysis or loss and chronic disorder of production*.Clinical findings and normal MCV= acute hemolysis or loss without adequate time for bone marrow production to compensate**. Macrocytic anemia (MCV>100)Normocytic anemia (80<MCV<100)Microcytic anemia (MCV<80)

* For instance, sickle cell anemia with superimposed iron deficiency; chronic gastric bleeding with B12 and folate deficiency; and other instances of anemia with more than one cause.
** Confirm by repeating reticulocyte count: ongoing combination of low reticulocyte production index, normal MCV and hemolysis or loss may be seen in bone marrow failure or anemia of chronic disease, with superimposed or related hemolysis or blood loss.

Here is a schematic representation of how to consider anemia with MCV as the starting point:

Anemia
Macrocytic anemia (MCV>100)Normocytic anemia (MCV 80–100)Microcytic anemia (MCV<80)
High reticulocyte countLow reticulocyte count


Other characteristics visible on the peripheral smear may provide valuable clues about a more specific diagnosis; for example, abnormal white blood cells may point to a cause in the bone marrow.

Microcytic

Microcytic anemia is primarily a result of hemoglobin synthesis failure/insufficiency, which could be caused by several etiologies:

Iron deficiency anemia is the most common type of anemia overall and it has many causes. RBCs often appear hypochromic (paler than usual) and microcytic (smaller than usual) when viewed with a microscope.

  • Iron deficiency anemia is due to insufficient dietary intake or absorption of iron to meet the body's needs. Infants, toddlers, and pregnant women have higher than average needs. Increased iron intake is also needed to offset blood losses due to digestive tract issues, frequent blood donations, or heavy menstrual periods.[15] Iron is an essential part of hemoglobin, and low iron levels result in decreased incorporation of hemoglobin into red blood cells. In the United States, 12% of all women of childbearing age have iron deficiency, compared with only 2% of adult men. The incidence is as high as 20% among African American and Mexican American women.[16] Studies have shown iron deficiency without anemia causes poor school performance and lower IQ in teenage girls, although this may be due to socioeconomic factors.[17][18] Iron deficiency is the most prevalent deficiency state on a worldwide basis. It is sometimes the cause of abnormal fissuring of the angular (corner) sections of the lips (angular stomatitis).
  • In the United States, the most common cause of iron deficiency is bleeding or blood loss, usually from the gastrointestinal tract. Fecal occult blood testing, upper endoscopy and lower endoscopy should be performed to identify bleeding lesions. In older men and women, the chances are higher that bleeding from the gastrointestinal tract could be due to colon polyps or colorectal cancer.
  • Worldwide, the most common cause of iron deficiency anemia is parasitic infestation (hookworms, amebiasis, schistosomiasis and whipworms).[19]

The Mentzer index (mean cell volume divided by the RBC count) predicts whether microcytic anaemia may be due to iron deficiency or thallasemia, although it requires confirmation.[citation needed]

Macrocytic

  • Megaloblastic anemia, the most common cause of macrocytic anemia, is due to a deficiency of either vitamin B12, folic acid, or both. Deficiency in folate and/or vitamin B12 can be due either to inadequate intake or insufficient absorption. Folate deficiency normally does not produce neurological symptoms, while B12 deficiency does.
    • Pernicious anemia is caused by a lack of intrinsic factor, which is required to absorb vitamin B12 from food. A lack of intrinsic factor may arise from an autoimmune condition targeting the parietal cells (atrophic gastritis) that produce intrinsic factor or against intrinsic factor itself. These lead to poor absorption of vitamin B12.
    • Macrocytic anemia can also be caused by removal of the functional portion of the stomach, such as during gastric bypass surgery, leading to reduced vitamin B12/folate absorption. Therefore, one must always be aware of anemia following this procedure.
  • Hypothyroidism
  • Alcoholism commonly causes a macrocytosis, although not specifically anemia. Other types of liver disease can also cause macrocytosis.
  • Drugs such as Methotrexate, zidovudine, and other substances may inhibit DNA replication such as heavy metals (e.g. Lead)

Macrocytic anemia can be further divided into "megaloblastic anemia" or "nonmegaloblastic macrocytic anemia". The cause of megaloblastic anemia is primarily a failure of DNA synthesis with preserved RNA synthesis, which results in restricted cell division of the progenitor cells. The megaloblastic anemias often present with neutrophil hypersegmentation (six to 10 lobes). The nonmegaloblastic macrocytic anemias have different etiologies (i.e. unimpaired DNA globin synthesis,) which occur, for example, in alcoholism.

In addition to the nonspecific symptoms of anemia, specific features of vitamin B12 deficiency include peripheral neuropathy and subacute combined degeneration of the cord with resulting balance difficulties from posterior column spinal cord pathology.[20] Other features may include a smooth, red tongue and glossitis.

The treatment for vitamin B12-deficient anemia was first devised by William Murphy, who bled dogs to make them anemic, and then fed them various substances to see what (if anything) would make them healthy again. He discovered that ingesting large amounts of liver seemed to cure the disease. George Minot and George Whipple then set about to isolate the curative substance chemically and ultimately were able to isolate the vitamin B12 from the liver. All three shared the 1934 Nobel Prize in Medicine.[21]

Normocytic

Normocytic anemia occurs when the overall hemoglobin levels are decreased, but the red blood cell size (mean corpuscular volume) remains normal. Causes include:

Dimorphic

A dimorphic appearance on a peripheral blood smear occurs when there are two simultaneous populations of red blood cells, typically of different size and hemoglobin content (this last feature affecting the color of the red blood cell on a stained peripheral blood smear). For example, a person recently transfused for iron deficiency would have small, pale, iron deficient red blood cells (RBCs) and the donor RBCs of normal size and color. Similarly, a person transfused for severe folate or vitamin B12 deficiency would have two cell populations, but, in this case, the patient's RBCs would be larger and paler than the donor's RBCs. A person with sideroblastic anemia (a defect in heme synthesis, commonly caused by alcoholism, but also drugs/toxins, nutritional deficiencies, a few acquired and rare congenital diseases) can have a dimorphic smear from the sideroblastic anemia alone. Evidence for multiple causes appears with an elevated RBC distribution width (RDW), indicating a wider-than-normal range of red cell sizes, also seen in common nutritional anemia.

Heinz body anemia

Heinz bodies form in the cytoplasm of RBCs and appear as small dark dots under the microscope. Heinz body anemia has many causes, and some forms can be drug-induced. It is triggered in cats by eating onions[22] or acetaminophen (paracetamol). It can be triggered in dogs by ingesting onions or zinc, and in horses by ingesting dry red maple leaves.

Hyperanemia

Hyperanemia is a severe form of anemia, in which the hematocrit is below 10%.

Refractory anemia

Refractory anemia, an anemia which does not respond to treatment,[23] is often seen secondary to myelodysplastic syndromes.[24]

Iron deficiency anemia may also be refractory as a clinical manifestation of gastrointestinal problems which disrupt iron absorption or cause occult bleeding. [25]

Treatments

Treatments for anemia depend on severity and cause.

Oral iron

Nutritional iron deficiency is common in developing nations. An estimated two-thirds of children and of women of childbearing age in most developing nations are estimated to suffer from iron deficiency; one-third of them have the more severe form of the disorder, anemia.[26] Iron deficiency from nutritional causes is rare in men and postmenopausal women. The diagnosis of iron deficiency mandates a search for potential sources of loss, such as gastrointestinal bleeding from ulcers or colon cancer. Mild to moderate iron-deficiency anemia is treated by oral iron supplementation with ferrous sulfate, ferrous fumarate, or ferrous gluconate. When taking iron supplements, stomach upset and/or darkening of the feces are commonly experienced. The stomach upset can be alleviated by taking the iron with food; however, this decreases the amount of iron absorbed. Vitamin C aids in the body's ability to absorb iron, so taking oral iron supplements with orange juice is of benefit.

In anemias of chronic disease, associated with chemotherapy, or associated with renal disease, some clinicians prescribe recombinant erythropoietin or epoetin alfa, to stimulate RBC production, although since there is also concurrent iron deficiency and inflammation present, parenteral iron is advised to be taken concurrently.[27]

Injectable iron

In cases where oral iron has either proven ineffective, would be too slow (for example, pre-operatively) or where absorption is impeded (for example in cases of inflammation), parenteral iron can be used. The body can absorb up to 6 mg iron daily from the gastrointestinal tract. In many cases the patient has a deficit of over 1,000 mg of iron which would require several months to replace. This can be given concurrently with erythropoietin to ensure sufficient iron for increased rates of erythropoiesis.

Blood transfusions

In those with coronary artery disease who are not actively bleeding blood transfusions are only recommended when the hemoglobin is below 60 to 80g/L (6 to 8 g/dL).[3][4] Transfusing earlier does not improve survival.[28]

Four randomized, controlled clinical trials have been conducted to evaluate aggressive versus conservative transfusion strategies in critically ill patients. All four of these studies failed to find a benefit with more aggressive transfusion strategies.[29][30][31][32] And more recent studies have shown that transfusing patients worsens outcome. This is further substantiated by guidelines increasingly advising that transfusions should only be undertaken in cases of cardiovascular instability.[33]

In addition, at least two retrospective studies have shown increases in adverse clinical outcomes in critically ill patients who underwent more aggressive transfusion strategies.[34][35]

Hyperbaric oxygen

Treatment of exceptional blood loss (anemia) is recognized as an indication for hyperbaric oxygen (HBO) by the Undersea and Hyperbaric Medical Society.[36][37] The use of HBO is indicated when oxygen delivery to tissue is not sufficient in patients who cannot be given blood transfusions for medical or religious reasons. HBO may be used for medical reasons when threat of blood product incompatibility or concern for transmissible disease are factors.[36] The beliefs of some religions (ex: Jehovah's Witnesses) may require they use the HBO method.[36] A 2005 review of the use of HBO in severe anemia found all publications reported positive results.[38]

Vitamin supplements given orally (folic acid or vitamin B12) or intramuscularly (vitamin B12) will replace specific deficiencies.

Erythropoiesis-stimulating agent

The motive for the administration of an erythropoiesis-stimulating agent (ESA) is to maintain hemoglobin at the lowest level that both minimizes transfusions and meets the individual persons needs.[39] They should not be used for mild or moderate anemia.[28] They are not recommended in people with chronic kidney disease unless hemoglobin levels are less than 10 g/dL or they have symptoms of anemia. Their use should be along with parenteral iron.[39][40]

Epidemiology

A moderate degree of iron-deficiency anemia affected approximately 610 million people worldwide or 8.8% of the population.[5] It is slightly more common in female (9.9%) than males (7.8%).[5] Mild iron deficiency anemia affects another 375 million.[5]


History

Evidence of anemia goes back more than 4000 years.[41]

References

  1. ^ MedicineNet.com --> Definition of Anemia Last Editorial Review: 12/9/2000 8:31:00 AM
  2. ^ merriam-webster dictionary --> anemia Retrieved on May 25, 2009
  3. ^ a b c d e f g h i j k l m n Janz, TG; Johnson, RL; Rubenstein, SD (2013 Nov). "Anemia in the emergency department: evaluation and treatment". Emergency medicine practice. 15 (11): 1–15, quiz 15-6. PMID 24716235. {{cite journal}}: Check date values in: |date= (help)
  4. ^ a b c Amir Qaseem (Dec 3, 2013). "Treatment of Anemia in Patients With Heart Disease: A Clinical Practice Guideline From the American College of Physicians". Annals of Internal Medicine. doi:10.7326/0003-4819-159-11-201312030-00009.
  5. ^ a b c d e Vos, T; Flaxman, AD; Naghavi, M; Lozano, R; Michaud, C; Ezzati, M; Shibuya, K; Salomon, JA; et al. (Dec 15, 2012). "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2163–96. doi:10.1016/S0140-6736(12)61729-2. PMID 23245607.
  6. ^ eMedicineHealth > anemia article Author: Saimak T. Nabili, MD, MPH. Editor: Melissa Conrad Stöppler, MD. Last Editorial Review: 12/9/2008. Retrieved on 4 April 2009
  7. ^ National Heart Lung and Blood Institute > What Causes Anemia? Retrieved on June 9, 2010
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Table 12-1 in: Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson. Robbins Basic Pathology. Philadelphia: Saunders. ISBN 1-4160-2973-7.{{cite book}}: CS1 maint: multiple names: authors list (link) 8th edition.
  9. ^ Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson; & Mitchell, Richard N. (2007). Robbins Basic Pathology (8th ed.). Saunders Elsevier. p. 432 ISBN 978-1-4160-2973-1
  10. ^ Cotran, Ramzi S.; Kumar, Vinay; Fausto, Nelson; Nelso Fausto; Robbins, Stanley L.; Abbas, Abul K. (2005). Robbins and Cotran pathologic basis of disease. St. Louis, Mo: Elsevier Saunders. p. 637. ISBN 0-7216-0187-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. ^ a b AUTOIMMUNE HEMOLYTIC ANEMIA (AIHA)[dead link] By J.L. Jenkins. The Regional Cancer Center. 2001
  12. ^ Berentsen S, Beiske K, Tjønnfjord GE (October 2007). "Primary chronic cold agglutinin disease: An update on pathogenesis, clinical features and therapy". Hematology. 12 (5): 361–70. doi:10.1080/10245330701445392. PMC 2409172. PMID 17891600.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Page 62 (Fluid imbalances) in: Portable Fluids and Electrolytes (Portable Series). Hagerstwon, MD: Lippincott Williams & Wilkins. 2007. ISBN 1-58255-678-4.
  14. ^ World Health Organization (2008). Worldwide prevalence of anaemia 1993–2005 (PDF). Geneva: World Health Organization. ISBN 978-92-4-159665-7. Archived from the original (PDF) on 12 March 2009. Retrieved 2009-03-25. {{cite book}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  15. ^ Recommendations to Prevent and Control Iron Deficiency in the United States MMWR 1998;47 (No. RR-3) p. 5
  16. ^ "Iron Deficiency --- United States, 1999--2000". MMWR. 51 (40): 897–899. October 11, 2002. Retrieved 21 April 2012.
  17. ^ Halterman JS, Kaczorowski JM, Aligne CA, Auinger P, Szilagyi PG (2001). "Iron Deficiency and Cognitive Achievement Among School-Aged Children and Adolescents in the United States". Pediatrics. 107 (6): 1381–1386. doi:10.1542/peds.107.6.1381. PMID 11389261.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Grantham-McGregor S, Ani C (2001). "Iron-Deficiency Anemia: Reexamining the Nature and Magnitude of the Public Health Problem". J Nutr. 131 (2): 649S–668S. PMID 11160596.
  19. ^ "Iron Deficiency Anaemia: Assessment, Prevention, and Control: A guide for programme managers" (PDF). Retrieved 2010-08-24.
  20. ^ eMedicine – Vitamin B-12 Associated Neurological Diseases : Article by Niranjan N Singh, MD, DM, DNB July 18, 2006
  21. ^ "Physiology or Medicine 1934 – Presentation Speech". Nobelprize.org. 1934-12-10. Archived from the original on 28 August 2010. Retrieved 2010-08-24. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  22. ^ "Onions are Toxic to Cats". Peteducation.com. Archived from the original on 3 September 2010. Retrieved 2010-08-24. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  23. ^ "MedTerms Definition: Refractory Anemia". Medterms.com. 2011-04-27. Retrieved 2011-10-31.
  24. ^ "Good Source for later". Atlasgeneticsoncology.org. Retrieved 2011-10-31.
  25. ^ Mody RJ, Brown PI, Wechsler DS (February 2003). "Refractory iron deficiency anemia as the primary clinical manifestation of celiac disease". J. Pediatr. Hematol. Oncol. 25 (2): 169–72. doi:10.1097/00043426-200302000-00018. PMID 12571473.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ West CE (November 1996). "Strategies to control nutritional anemia". Am. J. Clin. Nutr. 64 (5): 789–90. PMID 8901803.
  27. ^ http://guidance.nice.org.uk/CG114/Guidance/pdf/English
  28. ^ a b Kansagara D, Dyer E, Englander H, Fu R, Freeman M, Kagen D (Dec 3, 2013). "Treatment of anemia in patients with heart disease: a systematic review". Annals of internal medicine. 159 (11): 746–57. PMID 24297191.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Hébert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E (1999). "A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group". N. Engl. J. Med. 340 (6): 409–17. doi:10.1056/NEJM199902113400601. PMID 9971864.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Bush RL, Pevec WC, Holcroft JW (1997). "A prospective, randomized trial limiting perioperative red blood cell transfusions in vascular patients". Am. J. Surg. 174 (2): 143–8. doi:10.1016/S0002-9610(97)00073-1. PMID 9293831.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Bracey AW, Radovancevic R, Riggs SA, Houston S, Cozart H, Vaughn WK, Radovancevic B, McAllister HA, Cooley DA (1999). "Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome". Transfusion. 39 (10): 1070–7. doi:10.1046/j.1537-2995.1999.39101070.x. PMID 10532600.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ McIntyre LA, Fergusson DA, Hutchison JS, Pagliarello G, Marshall JC, Yetisir E, Hare GM, Hébert PC (2006). "Effect of a liberal versus restrictive transfusion strategy on mortality in patients with moderate to severe head injury". Neurocritical care. 5 (1): 4–9. doi:10.1385/NCC:5:1:4. PMID 16960287.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Goddard AF, James MW, McIntyre AS, Scott BB (2011). "Guidelines for the management of iron deficiency anaemia". Gut. 60 (10): 1309–1316. doi:10.1136/gut.2010.228874. PMID 21561874.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Abraham E, MacIntyre NR, Shabot MM, Duh MS, Shapiro MJ (2004). "The CRIT Study: Anemia and blood transfusion in the critically ill—current clinical practice in the United States". Crit. Care Med. 32 (1): 39–52. doi:10.1097/01.CCM.0000104112.34142.79. PMID 14707558.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, Meier-Hellmann A, Nollet G, Peres-Bota D (2002). "Anemia and blood transfusion in critically ill patients". JAMA. 288 (12): 1499–507. doi:10.1001/jama.288.12.1499. PMID 12243637.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ a b c Undersea and Hyperbaric Medical Society. "Exceptional Blood Loss — Anemia". Retrieved 2008-05-19.[dead link]
  37. ^ Hart GB, Lennon PA, Strauss MB. (1987). "Hyperbaric oxygen in exceptional acute blood-loss anemia". J. Hyperbaric Med. 2 (4): 205–210. Retrieved 2008-05-19.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Van Meter KW (2005). "A systematic review of the application of hyperbaric oxygen in the treatment of severe anemia: an evidence-based approach". Undersea Hyperb Med. 32 (1): 61–83. PMID 15796315. Retrieved 2008-05-19.
  39. ^ a b Aapro MS, Link H (2008). "September 2007 update on EORTC guidelines and anemia management with erythropoiesis-stimulating agents". Oncologist. 13 Suppl 3: 33–6. doi:10.1634/theoncologist.13-S3-33. PMID 18458123.
  40. ^ American Society of Nephrology, "Five Things Physicians and Patients Should Question" (PDF), Choosing Wisely: an initiative of the ABIM Foundation, American Society of Nephrology, retrieved August 17, 2012
  41. ^ Tayles, N (1996 Sep). "Anemia, genetic diseases, and malaria in prehistoric mainland Southeast Asia". American journal of physical anthropology. 101 (1): 11–27. PMID 8876811. {{cite journal}}: Check date values in: |date= (help)

{{Diseases of RBCs and megakaryocytes}} may refer to:

{{Template disambiguation}} should never be transcluded in the main namespace.

Template:Link GA