Jump to content

Timeline of scientific computing: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m 1980s: sp
Line 5: Line 5:
===18th century===
===18th century===
*The French naturalist Comte de Buffon poses [[Buffon's needle|his needle problem]] in 1733; generalized to the Buffon-Laplace problem, and then further into Clean Tile Problem.<ref>Buffon, G. Editor's note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris. Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733; according to Weisstein, Eric W. [http://mathworld.wolfram.com/BuffonsNeedleProblem.html "Buffon's Needle Problem."] From MathWorld--A Wolfram Web Resource. 20 Dec 2012 20 Dec 2012.</ref><ref>Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777; according to Weisstein, Eric W. [http://mathworld.wolfram.com/BuffonsNeedleProblem.html "Buffon's Needle Problem."] From MathWorld--A Wolfram Web Resource. 20 Dec 2012</ref>
*The French naturalist Comte de Buffon poses [[Buffon's needle|his needle problem]] in 1733; generalized to the Buffon-Laplace problem, and then further into Clean Tile Problem.<ref>Buffon, G. Editor's note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris. Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733; according to Weisstein, Eric W. [http://mathworld.wolfram.com/BuffonsNeedleProblem.html "Buffon's Needle Problem."] From MathWorld--A Wolfram Web Resource. 20 Dec 2012 20 Dec 2012.</ref><ref>Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777; according to Weisstein, Eric W. [http://mathworld.wolfram.com/BuffonsNeedleProblem.html "Buffon's Needle Problem."] From MathWorld--A Wolfram Web Resource. 20 Dec 2012</ref>

===19th century===
* Lovelace's note G on the [[Analytical Engine]] (1842) describes an algorithm for generating [[Bernoulli numbers]]. It is considered the first algorithm ever specifically tailored for implementation on a computer, and thus the first-ever computer programme.<ref>{{cite web|last=Simonite|first=Tom|url=http://www.newscientist.com/blogs/shortsharpscience/2009/03/ada-lovelace-day.html|title=Short Sharp Science: Celebrating Ada Lovelace: the 'world's first programmer'|work=New Scientist|date=24 March 2009|accessdate=14 April 2012}}</ref><ref name="newyorker'13">http://www.newyorker.com/online/blogs/books/2013/08/tom-stoppards-arcadia-at-twenty.html</ref> The engine was never completed, however, so her code was never tested.<ref name="kim_toole"/>


===1900s===
===1900s===

Revision as of 21:26, 1 November 2014

The following is a timeline of scientific computing, also known as computational science.

Before modern computers

18th century

  • The French naturalist Comte de Buffon poses his needle problem in 1733; generalized to the Buffon-Laplace problem, and then further into Clean Tile Problem.[1][2]

19th century

  • Lovelace's note G on the Analytical Engine (1842) describes an algorithm for generating Bernoulli numbers. It is considered the first algorithm ever specifically tailored for implementation on a computer, and thus the first-ever computer programme.[3][4] The engine was never completed, however, so her code was never tested.[5]

1900s

1920s

1930s

This decade marks the first major strides to a modern computer, and hence the start of the modern era.

1940s

  • Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.[9][10][11]
  • George Dantzig introduces the simplex method (voted one of the top 10 algorithms of the 20th century) in 1947.[12]
  • Ulam and von Neumann introduce the notion of cellular automata.[13]
  • Turing formulated the LU decomposition method.[14]
  • Philips creates (invents?) the MONIAC hydraulic computer at LSE, better known as "Philip's Economic Computer".[15][16]

1950s

1960s

1970s

1980s

1990s

2000s

Miscelleaneous

See also

References

  1. ^ Buffon, G. Editor's note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris. Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733; according to Weisstein, Eric W. "Buffon's Needle Problem." From MathWorld--A Wolfram Web Resource. 20 Dec 2012 20 Dec 2012.
  2. ^ Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777; according to Weisstein, Eric W. "Buffon's Needle Problem." From MathWorld--A Wolfram Web Resource. 20 Dec 2012
  3. ^ Simonite, Tom (24 March 2009). "Short Sharp Science: Celebrating Ada Lovelace: the 'world's first programmer'". New Scientist. Retrieved 14 April 2012.
  4. ^ http://www.newyorker.com/online/blogs/books/2013/08/tom-stoppards-arcadia-at-twenty.html
  5. ^ Cite error: The named reference kim_toole was invoked but never defined (see the help page).
  6. ^ MW Kutta (1900). "Beiträge zur näherungsweisen Integration totaler Differentialgleichungen" [Contributions to the approximate integration of total differential equations] (in German). Thesis, University of Munich.
  7. ^ Runge, C., "Über die numerische Auflösung von Differentialgleichungen" [About the numerical solution of differential equations](in German), Math. Ann. 46 (1895) 167-178.
  8. ^ L F Richardson, Weather Prediction by Numerical Process. Cambridge University Press (1922).
  9. ^ Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125. {{cite journal}}: |volume= has extra text (help). Accessed 5 may 2012.
  10. ^ S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  11. ^ N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335-341.
  12. ^ "SIAM News, November 1994". Retrieved 6 June 2012. Systems Optimization Laboratory, Stanford University Huang Engineering Center (site host/mirror).
  13. ^ Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
  14. ^ A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, ISBN 0-534-99845-3.) .
  15. ^ The computer model that once explained the British economy. Larry Elliott, The Guardian, Thursday 8 May 2008.
  16. ^ Phillip's Economic Computer, 1949. Exhibit at London Science Museum.
  17. ^ Charney, J.; Fjørtoft, R.; von Neumann, J. (November 1950). "Numerical Integration of the Barotropic Vorticity Equation". Tellus 2 (4).
  18. ^ See the review article:- Smagorinsky, J (1983). "The Beginnings of Numerical Weather Prediction and General Circulation Modelling: Early Recollections" (PDF). Advances in Geophysics. 25. Retrieved 6 June 2012.
  19. ^ Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409-436 (1952).
  20. ^ Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1-33 (1952).
  21. ^ Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33-53 (1952).
  22. ^ Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255-282 (1950).
  23. ^ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953): Equations of State Calculations by Fast Computing Machines (Retrieved 3 May 2012). Journal of Chemical Physics 21 (6): 1087–1092. Bibcode 1953JChPh..21.1087M. doi:10.1063/1.1699114.
  24. ^ B. J. Alder and T. E. Wainwright (1957). "Phase Transition for a Hard Sphere System". J. Chem. Phys. 27 (5): 1208. doi:10.1063/1.1743957.
  25. ^ B. J. Alder and T. E. Wainwright (1962). "Phase Transition in Elastic Disks". Phys. Rev. 127 (2): 359–361. doi:10.1103/PhysRev.127.359.
  26. ^ Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM. 5 (4): 339–342. doi:10.1145/320941.320947. MR 0111128.
  27. ^ J.G.F. Francis, "The QR Transformation, I", The Computer Journal, 4(3), pages 265–271 (1961, received October 1959) online at oxfordjournals.org;J.G.F. Francis, "The QR Transformation, II" The Computer Journal, 4(4), pages 332–345 (1962) online at oxfordjournals.org.
  28. ^ Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
  29. ^ RW Clough, “The Finite Element Method in Plane Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
  30. ^ Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences 20 (2): 130–141.
  31. ^ Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. doi:10.1103/PhysRev.136.A405.
  32. ^ Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965).
  33. ^ B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN ISBN 9782082106474 ; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
  34. ^ Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9.
  35. ^ Kenneth Appel and Wolfgang Haken, "Every planar map is four colorable, Part I: Discharging," Illinois Journal of Mathematics 21: 429–490, 1977.
  36. ^ Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491-567, 1977.
  37. ^ Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108-121, 1977.
  38. ^ L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  39. ^ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187-207.
  40. ^ L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
  41. ^ NCSA Mosaic. National Center for Supercomputing Applications homepage. Retrieved 11 Nov 2012.