2000 (number): Difference between revisions
Appearance
Content deleted Content added
No edit summary Tags: Reverted Visual edit Mobile edit Mobile web edit |
revert IP vandal |
||
Line 12: | Line 12: | ||
== Selected numbers in the range 2001–2999 == |
== Selected numbers in the range 2001–2999 == |
||
=== |
===2001 to 2099=== |
||
* ''' |
* '''2001''' – [[sphenic number]] |
||
* ''' |
* '''2002''' – [[palindromic number]] |
||
* ''' |
* '''2003''' – [[Sophie Germain prime]] and the smallest prime number in the 2000s |
||
* ''' |
* '''2005''' – A vertically symmetric number |
||
* '''2009''' – |
* '''2009''' – 7<sup>4</sup> − 7<sup>3</sup> − 7<sup>2</sup> |
||
* '''2011''' – [[Sexy prime]] number. Also, sum of eleven consecutive primes: 2011 = 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211. |
|||
* 99 + 211. |
|||
* '''2015''' – [[Lucas–Carmichael number]]<ref name=":0">{{Cite OEIS|1=A006972|2=Lucas-Carmichael numbers|accessdate=2016-06-13}}</ref> |
* '''2015''' – [[Lucas–Carmichael number]]<ref name=":0">{{Cite OEIS|1=A006972|2=Lucas-Carmichael numbers|accessdate=2016-06-13}}</ref> |
||
* '''2016''' – [[triangular number]], number of 5-cubes in a 9-cube, [[Erdős–Nicolas number]],<ref>{{Cite OEIS|1=A194472|2=Erdős-Nicolas numbers|accessdate=2016-06-13}}</ref> 2<sup>11</sup>-2<sup>5</sup>. |
* '''2016''' – [[triangular number]], number of 5-cubes in a 9-cube, [[Erdős–Nicolas number]],<ref>{{Cite OEIS|1=A194472|2=Erdős-Nicolas numbers|accessdate=2016-06-13}}</ref> 2<sup>11</sup>-2<sup>5</sup>. |
||
* '''2017''' – [[Mertens function]] zero. (2011, 2017) is a [[sexy prime |
* '''2017''' – [[Mertens function]] zero. (2011, 2017) is a [[sexy prime]] pair. |
||
* '''2019''' – smallest number that can be represented as the sum of 3 prime squares 6 different ways: 2019 = 7<sup>2</sup> + 11<sup>2</sup> + 43<sup>2</sup> = 7<sup>2</sup> + 17<sup>2</sup> + 41<sup>2</sup> = 13<sup>2</sup> + 13<sup>2</sup> + 41<sup>2</sup> = 11<sup>2</sup> + 23<sup>2</sup> + 37<sup>2</sup> = 17<sup>2</sup> + 19<sup>2</sup> + 37<sup>2</sup> = 23<sup>2</sup> + 23<sup>2</sup> + 31<sup>2</sup>.{{cn|date=December 2018}} |
|||
* 31<sup>2</sup>.{{cn|date=December 2018}} |
|||
* '''2020''' – sum of the [[totient]] function for the first 81 integers |
* '''2020''' – sum of the [[totient]] function for the first 81 integers |
||
* '''2024''' – [[tetrahedral number]]<ref name=":1">{{Cite OEIS|1=A000292|2=Tetrahedral numbers|accessdate=2016-06-13}}</ref> |
* '''2024''' – [[tetrahedral number]]<ref name=":1">{{Cite OEIS|1=A000292|2=Tetrahedral numbers|accessdate=2016-06-13}}</ref> |
||
* integers, [[centered octagonal number]]<ref name=":2">{{Cite OEIS|1=A016754|2=Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers|accessdate=2016-06-13}}</ref> |
* '''2025''' – 45<sup>2</sup>, sum of the cubes of the first nine integers, [[centered octagonal number]]<ref name=":2">{{Cite OEIS|1=A016754|2=Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers|accessdate=2016-06-13}}</ref> |
||
* '''2027''' – [[super-prime]], [[safe prime]]<ref name=":3">{{Cite OEIS|1=A005385|2=Safe primes|accessdate=2016-06-13}}</ref> |
* '''2027''' – [[super-prime]], [[safe prime]]<ref name=":3">{{Cite OEIS|1=A005385|2=Safe primes|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2029''' – member of the [[Mian–Chowla sequence]]<ref name=":4">{{Cite OEIS|1=A005282|2=Mian-Chowla sequence|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2030''' – 21<sup>2</sup> + 22<sup>2</sup> + 23<sup>2</sup> + 24<sup>2</sup> = 25<sup>2</sup> + 26<sup>2</sup> + 27<sup>2</sup> |
||
* ''' |
* '''2031''' – [[centered pentagonal number]]<ref name=":5">{{Cite OEIS|1=A005891|2=Centered pentagonal numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2039''' – [[Sophie Germain prime]], [[safe prime]]<ref name=":3" /> |
||
* ''' |
* '''2047''' – [[super-Poulet number]],<ref name=":6">{{Cite OEIS|1=A050217|2=Super-Poulet numbers|accessdate=2016-06-13}}</ref> [[Woodall number]],<ref>{{Cite OEIS|1=A003261|2=Woodall numbers|accessdate=2016-06-13}}</ref> [[decagonal number]].<ref name=":7">{{Cite OEIS|1=A001107|2=10-gonal (or decagonal) numbers|accessdate=2016-06-13}}</ref> Also, 2047 = 2<sup>11</sup> − 1 = 23 × 89 and is the first [[Mersenne number]] that is composite for a prime exponent. |
||
* '''2048''' – [[power of two]] 2<sup>11</sup> |
|||
* '''2049 - star prime''' |
|||
* '''2053''' – [[star number]] |
* '''2053''' – [[star number]] |
||
* '''2056''' – [[magic constant]] of ''n'' × ''n'' normal [[magic square]] and [[Eight queens puzzle|''n''-queens problem]] for ''n'' = 16. |
* '''2056''' – [[magic constant]] of ''n'' × ''n'' normal [[magic square]] and [[Eight queens puzzle|''n''-queens problem]] for ''n'' = 16. |
||
* ''' |
* '''2060''' – sum of the [[totient function]] for the first 82 integers |
||
* ''' |
* '''2063''' – [[Sophie Germain prime]], [[safe prime]].<ref name=":3" /> [[super-prime]] |
||
* ''' |
* '''2069''' – [[Sophie Germain prime]] |
||
* ''' |
* '''2070''' – [[pronic number]]<ref name=":8">{{Cite OEIS|1=A002378|2=Oblong (or promic, pronic, or heteromecic) numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2080''' – triangular number |
||
* '''2081''' – [[super-prime]] |
* '''2081''' – [[super-prime]] |
||
* ''' |
* '''2093''' – Mertens function zero |
||
* ''' |
* '''2095''' – Mertens function zero |
||
⚫ | |||
* |
|||
⚫ | |||
* '''2098 - unclickable''' |
|||
* ''' |
* '''2099''' – Mertens function zero, [[super-prime]], [[safe prime]],<ref name=":3" /> [[highly cototient number]]<ref name=":9">{{Cite OEIS|1=A100827|2=Highly cototient numbers|accessdate=2016-06-13}}</ref> |
||
===2100 to |
===2100 to 2199=== |
||
* '''2100''' – Mertens function zero |
* '''2100''' – Mertens function zero |
||
* ''' |
* '''2101''' – [[centered heptagonal number]]<ref name=":10">{{Cite OEIS|1=A069099|2=Centered heptagonal numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2107''' – member of a [[Ruth–Aaron pair]] with 2108 (first definition) |
||
* ''' |
* '''2108''' – member of a Ruth–Aaron pair with 2107 (first definition) |
||
* ''' |
* '''2109''' – [[square pyramidal number]]<ref name=":11">{{Cite OEIS|1=A000330|2=Square pyramidal numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2112''' – The break-through album of the band [[2112 (album)|Rush]] |
||
* ''' |
* '''2113''' – Mertens function zero, [[Proth prime]],<ref name=":12">{{Cite OEIS|1=A080076|2=Proth primes|accessdate=2016-06-13}}</ref> [[centered square number]]<ref name=":13">{{Cite OEIS|1=A001844|2=Centered square numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2116''' – 46<sup>2</sup> |
||
* ''' |
* '''2117''' – Mertens function zero |
||
* ''' |
* '''2119''' – Mertens function zero |
||
* ''' |
* '''2120''' – Mertens function zero |
||
* ''' |
* '''2122''' – Mertens function zero |
||
* ''' |
* '''2125''' – [[nonagonal number]]<ref name=":14">{{Cite OEIS|1=A001106|2=9-gonal (or enneagonal or nonagonal) numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2127''' – sum of the first 34 primes |
||
* ''' |
* '''2129''' – [[Sophie Germain prime]] |
||
* ''' |
* '''2135''' – Mertens function zero |
||
* ''' |
* '''2136''' – Mertens function zero |
||
* ''' |
* '''2137''' – prime of the form 2p-1 |
||
* ''' |
* '''2138''' – Mertens function zero |
||
* ''' |
* '''2141''' – [[Sophie Germain prime]] |
||
* '''2142''' – sum of the totient function for the first 83 integers |
* '''2142''' – sum of the totient function for the first 83 integers |
||
* '''2143''' – almost exactly 22{{pi}}<sup>4</sup> |
* '''2143''' – almost exactly 22{{pi}}<sup>4</sup> |
||
Line 92: | Line 92: | ||
* '''2188''' – [[Motzkin number]]<ref>{{Cite OEIS|1=A001006|2=Motzkin numbers|accessdate=2016-06-13}}</ref> |
* '''2188''' – [[Motzkin number]]<ref>{{Cite OEIS|1=A001006|2=Motzkin numbers|accessdate=2016-06-13}}</ref> |
||
* '''2197''' – 13<sup>3</sup>, palindromic in base 12 (1331<sub>12</sub>) |
* '''2197''' – 13<sup>3</sup>, palindromic in base 12 (1331<sub>12</sub>) |
||
* ''' |
* '''2199''' – perfect totient number<ref name=":16" /> |
||
===2200 to |
===2200 to 2299=== |
||
* ''' |
* '''2201''' – only known non-palindromic number whose [[cube]] is [[palindromic number|palindromic]]; also no known fourth or higher powers are palindromic for non-palindromic numbers |
||
* ''' |
* '''2205''' – odd [[abundant number]]<ref name=":17">{{Cite OEIS|1=A005231|2=Odd abundant numbers|accessdate=2016-06-13}}</ref> |
||
* '''2207''' – [[safe prime]],<ref name=":3" /> [[Lucas prime]]<ref>{{Cite OEIS|1=A005479|2=Prime Lucas numbers|accessdate=2016-06-13}}</ref> |
* '''2207''' – [[safe prime]],<ref name=":3" /> [[Lucas prime]]<ref>{{Cite OEIS|1=A005479|2=Prime Lucas numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2208''' – [[Keith number]]<ref name=":18">{{Cite OEIS|1=A007629|2=Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2209''' – 47<sup>2</sup>, palindromic in base 14 (B3B<sub>14</sub>), centered octagonal number<ref name=":2" /> |
||
* ''' |
* '''2211''' – triangular number |
||
* '''2221''' – [[super-prime]], [[happy number]] |
* '''2221''' – [[super-prime]], [[happy number]] |
||
* '''2222''' [[repdigit]] |
* '''2222''' – [[repdigit]] |
||
* '''2223''' – [[Kaprekar number]]<ref name=":19">{{Cite OEIS|1=A006886|2=Kaprekar numbers|accessdate=2016-06-13}}</ref> |
* '''2223''' – [[Kaprekar number]]<ref name=":19">{{Cite OEIS|1=A006886|2=Kaprekar numbers|accessdate=2016-06-13}}</ref> |
||
* '''2230''' – sum of the totient function for the first 85 integers |
|||
* '''2233 -''' 203 x 11 semiprime |
|||
* ''' |
* '''2232''' – decagonal number<ref name=":7" /> |
||
* ''' |
* '''2236''' – Harshad Number |
||
* ''' |
* '''2245''' – centered square number<ref name=":13" /> |
||
* ''' |
* '''2254''' – member of the Mian–Chowla sequence<ref name=":4" /> |
||
* ''' |
* '''2255''' – [[octahedral number]]<ref name=":20">{{Cite OEIS|1=A005900|2=Octahedral numbers|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2256''' – pronic number<ref name=":8" /> |
||
* ''' |
* '''2269''' – [[super-prime]], [[cuban prime]]<ref name=":21">{{Cite OEIS|1=A002407|2=Cuban primes|accessdate=2016-06-13}}</ref> |
||
* ''' |
* '''2272''' – sum of the totient function for the first 86 integers |
||
* '''2273''' – [[Sophie Germain prime]] |
* '''2273''' – [[Sophie Germain prime]] |
||
* '''2276''' – sum of the first 35 primes, centered heptagonal number<ref name=":10" /> |
* '''2276''' – sum of the first 35 primes, centered heptagonal number<ref name=":10" /> |
||
* ''' |
* '''2278''' – triangular number |
||
* '''2281''' – [[star number]] |
* '''2281''' – [[star number]] |
||
* '''2287''' – [[balanced prime]]<ref name=":22">{{Cite OEIS|1=A006562|2=Balanced primes|accessdate=2016-06-13}}</ref> |
* '''2287''' – [[balanced prime]]<ref name=":22">{{Cite OEIS|1=A006562|2=Balanced primes|accessdate=2016-06-13}}</ref> |
||
* '''2294''' – Mertens function zero |
|||
* '''2295''' – Mertens function zero |
|||
* '''2296''' – Mertens function zero |
* '''2296''' – Mertens function zero |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
===2300 to 2399=== |
===2300 to 2399=== |
Revision as of 14:10, 22 November 2020
| ||||
---|---|---|---|---|
Cardinal | two thousand | |||
Ordinal | 2000th (two thousandth) | |||
Factorization | 24 × 53 | |||
Greek numeral | ,Β´ | |||
Roman numeral | MM | |||
Unicode symbol(s) | MM, mm | |||
Binary | 111110100002 | |||
Ternary | 22020023 | |||
Senary | 131326 | |||
Octal | 37208 | |||
Duodecimal | 11A812 | |||
Hexadecimal | 7D016 |
Look up two thousand in Wiktionary, the free dictionary.
2000 (two thousand) is a natural number following 1999 and preceding 2001.
Two thousand is the highest number expressible using only two unmodified characters in Roman numerals (MM).
Selected numbers in the range 2001–2999
2001 to 2099
- 2001 – sphenic number
- 2002 – palindromic number
- 2003 – Sophie Germain prime and the smallest prime number in the 2000s
- 2005 – A vertically symmetric number
- 2009 – 74 − 73 − 72
- 2011 – Sexy prime number. Also, sum of eleven consecutive primes: 2011 = 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211.
- 2015 – Lucas–Carmichael number[1]
- 2016 – triangular number, number of 5-cubes in a 9-cube, Erdős–Nicolas number,[2] 211-25.
- 2017 – Mertens function zero. (2011, 2017) is a sexy prime pair.
- 2019 – smallest number that can be represented as the sum of 3 prime squares 6 different ways: 2019 = 72 + 112 + 432 = 72 + 172 + 412 = 132 + 132 + 412 = 112 + 232 + 372 = 172 + 192 + 372 = 232 + 232 + 312.[citation needed]
- 2020 – sum of the totient function for the first 81 integers
- 2024 – tetrahedral number[3]
- 2025 – 452, sum of the cubes of the first nine integers, centered octagonal number[4]
- 2027 – super-prime, safe prime[5]
- 2029 – member of the Mian–Chowla sequence[6]
- 2030 – 212 + 222 + 232 + 242 = 252 + 262 + 272
- 2031 – centered pentagonal number[7]
- 2039 – Sophie Germain prime, safe prime[5]
- 2047 – super-Poulet number,[8] Woodall number,[9] decagonal number.[10] Also, 2047 = 211 − 1 = 23 × 89 and is the first Mersenne number that is composite for a prime exponent.
- 2048 – power of two 211
- 2053 – star number
- 2056 – magic constant of n × n normal magic square and n-queens problem for n = 16.
- 2060 – sum of the totient function for the first 82 integers
- 2063 – Sophie Germain prime, safe prime.[5] super-prime
- 2069 – Sophie Germain prime
- 2070 – pronic number[11]
- 2080 – triangular number
- 2081 – super-prime
- 2093 – Mertens function zero
- 2095 – Mertens function zero
- 2096 – Mertens function zero
- 2097 – Mertens function zero
- 2099 – Mertens function zero, super-prime, safe prime,[5] highly cototient number[12]
2100 to 2199
- 2100 – Mertens function zero
- 2101 – centered heptagonal number[13]
- 2107 – member of a Ruth–Aaron pair with 2108 (first definition)
- 2108 – member of a Ruth–Aaron pair with 2107 (first definition)
- 2109 – square pyramidal number[14]
- 2112 – The break-through album of the band Rush
- 2113 – Mertens function zero, Proth prime,[15] centered square number[16]
- 2116 – 462
- 2117 – Mertens function zero
- 2119 – Mertens function zero
- 2120 – Mertens function zero
- 2122 – Mertens function zero
- 2125 – nonagonal number[17]
- 2127 – sum of the first 34 primes
- 2129 – Sophie Germain prime
- 2135 – Mertens function zero
- 2136 – Mertens function zero
- 2137 – prime of the form 2p-1
- 2138 – Mertens function zero
- 2141 – Sophie Germain prime
- 2142 – sum of the totient function for the first 83 integers
- 2143 – almost exactly 22π4
- 2145 – triangular number
- 2162 – pronic number[11]
- 2166 – sum of the totient function for the first 84 integers
- 2169 – Leyland number[18]
- 2171 – Mertens function zero
- 2172 – Mertens function zero
- 2175 – smallest number requiring 143 seventh powers for Waring representation
- 2176 – pentagonal pyramidal number,[19] centered pentagonal number[7]
- 2178 – first natural integer which digits in its decimal expression get reversed when multiplied by 4.[20]
- 2179 – Wedderburn–Etherington number[21]
- 2184 – equals both 37 − 3 and 133 − 13 and is believed to be the only such doubly strictly absurd number.[22][unreliable source?]
- 2187 – power of three: 37, vampire number,[23] perfect totient number[24]
- 2188 – Motzkin number[25]
- 2197 – 133, palindromic in base 12 (133112)
- 2199 – perfect totient number[24]
2200 to 2299
- 2201 – only known non-palindromic number whose cube is palindromic; also no known fourth or higher powers are palindromic for non-palindromic numbers
- 2205 – odd abundant number[26]
- 2207 – safe prime,[5] Lucas prime[27]
- 2208 – Keith number[28]
- 2209 – 472, palindromic in base 14 (B3B14), centered octagonal number[4]
- 2211 – triangular number
- 2221 – super-prime, happy number
- 2222 – repdigit
- 2223 – Kaprekar number[29]
- 2230 – sum of the totient function for the first 85 integers
- 2232 – decagonal number[10]
- 2236 – Harshad Number
- 2245 – centered square number[16]
- 2254 – member of the Mian–Chowla sequence[6]
- 2255 – octahedral number[30]
- 2256 – pronic number[11]
- 2269 – super-prime, cuban prime[31]
- 2272 – sum of the totient function for the first 86 integers
- 2273 – Sophie Germain prime
- 2276 – sum of the first 35 primes, centered heptagonal number[13]
- 2278 – triangular number
- 2281 – star number
- 2287 – balanced prime[32]
- 2294 – Mertens function zero
- 2295 – Mertens function zero
- 2296 – Mertens function zero
- 2299 – member of a Ruth–Aaron pair with 2300 (first definition)
2300 to 2399
- 2300 – tetrahedral number,[3] member of a Ruth–Aaron pair with 2299 (first definition)
- 2301 – nonagonal number[17]
- 2304 – 482
- 2306 – Mertens function zero
- 2309 – primorial prime, Mertens function zero, highly cototient number[12]
- 2310 – fifth primorial[33]
- 2311 – primorial prime
- 2321 – Mertens function zero
- 2322 – Mertens function zero
- 2326 – centered pentagonal number[7]
- 2328 – sum of the totient function for the first 87 integers, the number of groups of order 128[34]
- 2331 – centered cube number[35]
- 2338 – Mertens function zero
- 2339 – Sophie Germain prime
- 2341 – super-prime, twin prime with 2339
- 2346 – triangular number
- 2347 – sum of seven consecutive primes (313 + 317 + 331 + 337 + 347 + 349 + 353)
- 2351 – Sophie Germain prime, super-prime
- 2352 – pronic number[11]
- 2357 – Smarandache–Wellin prime[36]
- 2368 – sum of the totient function for the first 88 integers
- 2378 – Pell number[37]
- 2379 – member of the Mian–Chowla sequence[6]
- 2381 – super-prime, centered square number[16]
- 2383 (2384) – number of delegates required to win the 2016 Democratic Party presidential primaries (out of 4051)
- 2393 – Sophie Germain prime
- 2397 – sum of the squares of the first ten primes
- 2399 – Sophie Germain prime
2400 to 2499
- 2400 – perfect score on SAT tests administered after 2005
- 2401 – 74, 492, centered octagonal number[4]
- 2415 – triangular number
- 2417 – super-prime, balanced prime[32]
- 2425 – decagonal number[10]
- 2427 – sum of the first 36 primes
- 2431 – product of three consecutive primes
- 2437 – cuban prime[31]
- 2447 – safe prime[5]
- 2450 – pronic number[11]
- 2456 – sum of the totient function for the first 89 integers
- 2458 – centered heptagonal number[13]
- 2459 – Sophie Germain prime, safe prime[5]
- 2465 – magic constant of n × n normal magic square and n-queens problem for n = 17, Carmichael number[38]
- 2470 – square pyramidal number[14]
- 2477 – super-prime, cousin prime
- 2480 – sum of the totient function for the first 90 integers
- 2481 – centered pentagonal number[7]
- 2484 – nonagonal number[17]
- 2485 – triangular number
- 2491 – member of Ruth–Aaron pair with 2492 under second definition
- 2492 – member of Ruth–Aaron pair with 2491 under second definition
2500 to 2599
- 2500 – 502, palindromic in base 7 (102017)
- 2501 – Mertens function zero
- 2502 – Mertens function zero
- 2510 – member of the Mian–Chowla sequence[6]
- 2513 – member of the Padovan sequence[39]
- 2517 – Mertens function zero
- 2519 – the smallest number congruent to 1 (mod 2), 2 (mod 3), 3 (mod 4), ..., 9 (mod 10)
- 2520 – superior highly composite number; smallest number divisible by numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 12 ; colossally abundant number; Harshad number in several bases. It is also the highest number with more divisors than any number less than double itself.(sequence A072938 in the OEIS) Not only is it the 7th (and last) number with more divisors than any number double itself but it also the 7th number that is highly composite and the lowest common multiple of a consecutive set of integers from 1 (sequence A095921 in the OEIS) which is a property the previous number with this pattern of divisors does not have (360). That is, although 360 and 2520 both have more divisors than any number twice themselves, 2520 is the lowest number divisible by both 1 to 9 and 1 to 10, whereas 360 is not the lowest number divisible by 1 to 6 (which 60 is) and is not divisible by 1 to 7 (which 420 is). It is also the 6th and largest highly composite number that is a divisor of every higher highly composite number.(sequence A106037 in the OEIS)
- 2521 – star number, centered square number[16]
- 2522 – Mertens function zero
- 2523 – Mertens function zero
- 2524 – Mertens function zero
- 2525 – Mertens function zero
- 2530 – Mertens function zero, Leyland number[18]
- 2533 – Mertens function zero
- 2537 – Mertens function zero
- 2538 – Mertens function zero
- 2543 – Sophie Germain prime
- 2549 – Sophie Germain prime, super-prime
- 2550 – pronic number[11]
- 2552 – sum of the totient function for the first 91 integers
- 2556 – triangular number
- 2567 – Mertens function zero
- 2568 – Mertens function zero. Also number of digits in the decimal expansion of 1000!, or the product of all natural numbers from 1 to 1000.
- 2570 – Mertens function zero
- 2579 – safe prime[5]
- 2580 – Keith number[28]
- 2584 – Fibonacci number,[40] sum of the first 37 primes
- 2596 – sum of the totient function for the first 92 integers
2600 to 2699
- 2600 – tetrahedral number,[3] member of a Ruth–Aaron pair with 2601 (first definition)
- 2600 Hz is the tone used by a blue box to defeat toll charges on long distance telephone calls.
- 2600: The Hacker Quarterly is a magazine named after the above.
- The Atari 2600 was a popular video game console.
- 2601 – 512, member of a Ruth–Aaron pair with 2600 (first definition)
- 2609 – super-prime
- 2620 – amicable number with 2924
- 2626 – decagonal number[10]
- 2628 – triangular number
- 2632 – number of consecutive baseball games played by Cal Ripken, Jr.
- 2633 – sum of twenty-five consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167)
- 2641 – centered pentagonal number[7]
- 2647 – super-prime, centered heptagonal number[13]
- 2652 – pronic number
- 2656 – sum of the totient function for the first 93 integers
- 2665 – centered square number[16]
- 2674 – nonagonal number[17]
- 2677 – balanced prime[32]
- 2680 – number of 11-queens problem solutions
- 2683 – super-prime
- 2689 – Mertens function zero, Proth prime[15]
- 2693 – Sophie Germain prime
- 2699 – Sophie Germain prime
2700 to 2799
- 2701 – triangular number, super-Poulet number[8]
- 2702 – sum of the totient function for the first 94 integers
- 2704 – 522
- 2719 – super-prime, largest known odd number which cannot be expressed in the form x2 + y2 + 10z2 where x, y and z are integers.[41] In 1997 it was conjectured that this is also the largest such odd number.[42] It is now known this is true if the generalized Riemann hypothesis is true.[43]
- 2728 – Kaprekar number[29]
- 2729 – highly cototient number[12]
- 2731 – Wagstaff prime[44]
- 2736 – octahedral number[30]
- 2741 – Sophie Germain prime, 400th prime number
- 2744 – 143, palindromic in base 13 (133113)
- 2747 – sum of the first 38 primes
- 2749 – super-prime, cousin prime with 2753
- 2753 – Sophie Germain prime, Proth prime[15]
- 2756 – pronic number
- 2774 – sum of the totient function for the first 95 integers
- 2775 – triangular number
- 2780 – member of the Mian–Chowla sequence[6]
- 2783 – member of a Ruth–Aaron pair with 2784 (first definition)
- 2784 – member of a Ruth–Aaron pair with 2783 (first definition)
- 2791 – cuban prime[31]
2800 to 2899
- 2801 – first base 7 repunit prime
- 2803 – super-prime
- 2806 – centered pentagonal number,[7] sum of the totient function for the first 96 integers
- 2809 – 532, centered octagonal number[4]
- 2813 – centered square number[16]
- 2819 – Sophie Germain prime, safe prime, sum of seven consecutive primes (383 + 389 + 397 + 401 + 409 + 419 + 421)[5]
- 2821 – Carmichael number[38]
- 2835 – odd abundant number,[26] decagonal number[10]
- 2843 – centered heptagonal prime[45]
- 2850 – triangular number
- 2862 – pronic number
- 2870 – square pyramidal number[14]
- 2871 – nonagonal number[17]
- 2872 – tetranacci number[46]
- 2879 – safe prime[5]
- 2897 – super-prime, Markov number[47]
2900 to 2999
- 2902 – sum of the totient function for the first 97 integers
- 2903 – Sophie Germain prime, safe prime,[5] balanced prime[32]
- 2909 – super-prime
- 2914 – sum of the first 39 primes
- 2915 – Lucas–Carmichael number[1]
- 2916 – 542
- 2924 – amicable number with 2620
- 2925 – magic constant of n × n normal magic square and n-queens problem for n = 18, tetrahedral number,[3] member of the Mian-Chowla sequence[6]
- 2926 – triangular number
- 2939 – Sophie Germain prime
- 2944 – sum of the totient function for the first 98 integers
- 2963 – Sophie Germain prime, safe prime, balanced prime[32]
- 2965 – greater of second pair of Smith brothers, centered square number[16]
- 2969 – Sophie Germain prime
- 2970 – harmonic divisor number,[48] pronic number
- 2976 – centered pentagonal number[7]
- 2997 – chiliagonal number[49]
- 2999 – safe prime
References
- ^ a b Sloane, N. J. A. (ed.). "Sequence A006972 (Lucas-Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A194472 (Erdős-Nicolas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e f g h i j k Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A003261 (Woodall numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A080076 (Proth primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A002411 (Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A008918 (Numbers n such that 4*n = (n written backwards))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ^ Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Mackenzie, Dana (2018). "2184: An Absurd (and Adsurd) Tale". Integers. 18.
- ^ Sloane, N. J. A. (ed.). "Sequence A014575 (Vampire numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005231 (Odd abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A007629 (Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A006886 (Kaprekar numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A002110 (Primorial numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "The Small Groups library". Archived from the original on 2007-02-04. Retrieved 2008-01-22..
- ^ Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A069151 (Concatenations of consecutive primes, starting with 2, that are also prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A002997 (Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Odd numbers that are not of the form x^2+y^2+10*z^2". The Online Encyclopedia of Integer Sequences. The OEIS Foundation, Inc. Retrieved 13 November 2012.
- ^ Ono, Ken (1997). "Ramanujan, taxicabs, birthdates, zipcodes and twists" (PDF). American Mathematical Monthly. 104 (10): 912–917. CiteSeerX 10.1.1.514.8070. doi:10.2307/2974471. JSTOR 2974471. Retrieved 11 November 2012.
- ^ Ono, Ken; K Soundararajan (1997). "Ramanujan's ternary quadratic forms" (PDF). Inventiones Mathematicae. 130 (3): 415–454. CiteSeerX 10.1.1.585.8840. doi:10.1007/s002220050191. Archived from the original (PDF) on 18 July 2019. Retrieved 12 November 2012.
- ^ Sloane, N. J. A. (ed.). "Sequence A000979 (Wagstaff primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A144974 (Centered heptagonal prime numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A000078 (Tetranacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A001599 (Harmonic or Ore numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ Sloane, N. J. A. (ed.). "Sequence A195163 (1000-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.