Jump to content

2000 (number): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Reverted Visual edit Mobile edit Mobile web edit
revert IP vandal
Line 12: Line 12:
== Selected numbers in the range 2001–2999 ==
== Selected numbers in the range 2001–2999 ==


===2000 to 2100===
===2001 to 2099===
* '''2000''' – [[sphenic number]]
* '''2001''' – [[sphenic number]]
* '''2003''' – [[palindromic number]]
* '''2002''' – [[palindromic number]]
* '''2007''' – [[Sophie Germain prime]] prime and also the time phones were invented
* '''2003''' – [[Sophie Germain prime]] and the smallest prime number in the 2000s
* '''2008''' – A vertically symmetric number
* '''2005''' – A vertically symmetric number
* '''2009''' – prime
* '''2009''' – 7<sup>4</sup> − 7<sup>3</sup> − 7<sup>2</sup>
* '''2011''' – [[Sexy prime]] number. Also, sum of eleven consecutive primes: 2011 = 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211.
* 99 + 211.
* '''2015''' – [[Lucas–Carmichael number]]<ref name=":0">{{Cite OEIS|1=A006972|2=Lucas-Carmichael numbers|accessdate=2016-06-13}}</ref>
* '''2015''' – [[Lucas–Carmichael number]]<ref name=":0">{{Cite OEIS|1=A006972|2=Lucas-Carmichael numbers|accessdate=2016-06-13}}</ref>
* '''2016''' – [[triangular number]], number of 5-cubes in a 9-cube, [[Erdős–Nicolas number]],<ref>{{Cite OEIS|1=A194472|2=Erdős-Nicolas numbers|accessdate=2016-06-13}}</ref> 2<sup>11</sup>-2<sup>5</sup>.
* '''2016''' – [[triangular number]], number of 5-cubes in a 9-cube, [[Erdős–Nicolas number]],<ref>{{Cite OEIS|1=A194472|2=Erdős-Nicolas numbers|accessdate=2016-06-13}}</ref> 2<sup>11</sup>-2<sup>5</sup>.
* '''2017''' – [[Mertens function]] zero. (2011, 2017) is a [[sexy prime|sexy]] pair.
* '''2017''' – [[Mertens function]] zero. (2011, 2017) is a [[sexy prime]] pair.
* '''2019''' – smallest number that can be represented as the sum of 3 prime squares 6 different ways: 2019 = 7<sup>2</sup> + 11<sup>2</sup> + 43<sup>2</sup> = 7<sup>2</sup> + 17<sup>2</sup> + 41<sup>2</sup> = 13<sup>2</sup> + 13<sup>2</sup> + 41<sup>2</sup> = 11<sup>2</sup> + 23<sup>2</sup> + 37<sup>2</sup> = 17<sup>2</sup> + 19<sup>2</sup> + 37<sup>2</sup> = 23<sup>2</sup> + 23<sup>2</sup> + 31<sup>2</sup>.{{cn|date=December 2018}}
* 31<sup>2</sup>.{{cn|date=December 2018}}
* '''2020''' – sum of the [[totient]] function for the first 81 integers
* '''2020''' – sum of the [[totient]] function for the first 81 integers
* '''2024''' – [[tetrahedral number]]<ref name=":1">{{Cite OEIS|1=A000292|2=Tetrahedral numbers|accessdate=2016-06-13}}</ref>
* '''2024''' – [[tetrahedral number]]<ref name=":1">{{Cite OEIS|1=A000292|2=Tetrahedral numbers|accessdate=2016-06-13}}</ref>
* integers, [[centered octagonal number]]<ref name=":2">{{Cite OEIS|1=A016754|2=Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers|accessdate=2016-06-13}}</ref>
* '''2025''' – 45<sup>2</sup>, sum of the cubes of the first nine integers, [[centered octagonal number]]<ref name=":2">{{Cite OEIS|1=A016754|2=Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers|accessdate=2016-06-13}}</ref>
* '''2027''' – [[super-prime]], [[safe prime]]<ref name=":3">{{Cite OEIS|1=A005385|2=Safe primes|accessdate=2016-06-13}}</ref>
* '''2027''' – [[super-prime]], [[safe prime]]<ref name=":3">{{Cite OEIS|1=A005385|2=Safe primes|accessdate=2016-06-13}}</ref>
* '''2028''' – member of the [[Mian–Chowla sequence]]<ref name=":4">{{Cite OEIS|1=A005282|2=Mian-Chowla sequence|accessdate=2016-06-13}}</ref>
* '''2029''' – member of the [[Mian–Chowla sequence]]<ref name=":4">{{Cite OEIS|1=A005282|2=Mian-Chowla sequence|accessdate=2016-06-13}}</ref>
* '''2029''' – 21<sup>2</sup> + 22<sup>2</sup> + 23<sup>2</sup> + 24<sup>2</sup> = 25<sup>2</sup> + 26<sup>2</sup> + 27<sup>2</sup>
* '''2030''' – 21<sup>2</sup> + 22<sup>2</sup> + 23<sup>2</sup> + 24<sup>2</sup> = 25<sup>2</sup> + 26<sup>2</sup> + 27<sup>2</sup>
* '''2034''' – [[centered pentagonal number]]<ref name=":5">{{Cite OEIS|1=A005891|2=Centered pentagonal numbers|accessdate=2016-06-13}}</ref>
* '''2031''' – [[centered pentagonal number]]<ref name=":5">{{Cite OEIS|1=A005891|2=Centered pentagonal numbers|accessdate=2016-06-13}}</ref>
* '''2037''' – [[Sophie Germain prime]], [[safe prime]]<ref name=":3" />
* '''2039''' – [[Sophie Germain prime]], [[safe prime]]<ref name=":3" />
* '''2038''' – [[super-Poulet number]],<ref name=":6">{{Cite OEIS|1=A050217|2=Super-Poulet numbers|accessdate=2016-06-13}}</ref> [[Woodall number]],<ref>{{Cite OEIS|1=A003261|2=Woodall numbers|accessdate=2016-06-13}}</ref> [[decagonal number]].<ref name=":7">{{Cite OEIS|1=A001107|2=10-gonal (or decagonal) numbers|accessdate=2016-06-13}}</ref> Also, 2038 = 1019 x 2 or 1019 * 1 x 2.&minus;&nbsp; 2 x 1019 the first [[Mersenne number]] that is composite for a prime exponent.
* '''2047''' – [[super-Poulet number]],<ref name=":6">{{Cite OEIS|1=A050217|2=Super-Poulet numbers|accessdate=2016-06-13}}</ref> [[Woodall number]],<ref>{{Cite OEIS|1=A003261|2=Woodall numbers|accessdate=2016-06-13}}</ref> [[decagonal number]].<ref name=":7">{{Cite OEIS|1=A001107|2=10-gonal (or decagonal) numbers|accessdate=2016-06-13}}</ref> Also, 2047 = 2<sup>11</sup>&nbsp;&minus;&nbsp;1 = 23&nbsp;&times;&nbsp;89 and is the first [[Mersenne number]] that is composite for a prime exponent.
* '''2048''' – [[power of two]] 2<sup>11</sup>
* '''2049 - star prime'''
* '''2053''' – [[star number]]
* '''2053''' – [[star number]]
* '''2056''' – [[magic constant]] of ''n''&nbsp;×&nbsp;''n'' normal [[magic square]] and [[Eight queens puzzle|''n''-queens problem]] for ''n'' = 16.
* '''2056''' – [[magic constant]] of ''n''&nbsp;×&nbsp;''n'' normal [[magic square]] and [[Eight queens puzzle|''n''-queens problem]] for ''n'' = 16.
* '''2059''' – some prime and is the second prime number to reach 2100
* '''2060''' – sum of the [[totient function]] for the first 82 integers
* '''2067 -''' [[Sophie Germain prime]], [[safe prime]].<ref name=":3" /> [[super-prime]]
* '''2063''' [[Sophie Germain prime]], [[safe prime]].<ref name=":3" /> [[super-prime]]
* '''2071''' – [[Sophie Germain prime]]
* '''2069''' – [[Sophie Germain prime]]
* '''2072''' – [[pronic number]]<ref name=":8">{{Cite OEIS|1=A002378|2=Oblong (or promic, pronic, or heteromecic) numbers|accessdate=2016-06-13}}</ref>
* '''2070''' – [[pronic number]]<ref name=":8">{{Cite OEIS|1=A002378|2=Oblong (or promic, pronic, or heteromecic) numbers|accessdate=2016-06-13}}</ref>
* '''2079''' – alive prime
* '''2080''' – triangular number
* '''2081''' – [[super-prime]]
* '''2081''' – [[super-prime]]
* '''2083''' – pursuit-prime
* '''2093''' – Mertens function zero
* '''2091 - prime prime prime'''
* '''2095''' Mertens function zero
* '''2096''' – Mertens function zero
*
* '''2097''' – Mertens function zero
* '''2098 - unclickable'''
* '''2100''' – Mertens function zero, [[super-prime]], [[safe prime]],<ref name=":3" /> [[highly cototient number]]<ref name=":9">{{Cite OEIS|1=A100827|2=Highly cototient numbers|accessdate=2016-06-13}}</ref>
* '''2099''' – Mertens function zero, [[super-prime]], [[safe prime]],<ref name=":3" /> [[highly cototient number]]<ref name=":9">{{Cite OEIS|1=A100827|2=Highly cototient numbers|accessdate=2016-06-13}}</ref>


===2100 to 2200===
===2100 to 2199===
* '''2100''' – Mertens function zero
* '''2100''' – Mertens function zero
* '''2102''' – [[centered heptagonal number]]<ref name=":10">{{Cite OEIS|1=A069099|2=Centered heptagonal numbers|accessdate=2016-06-13}}</ref>
* '''2101''' – [[centered heptagonal number]]<ref name=":10">{{Cite OEIS|1=A069099|2=Centered heptagonal numbers|accessdate=2016-06-13}}</ref>
* '''2103''' – member of a [[Ruth–Aaron pair]] with 2108 (first definition)
* '''2107''' – member of a [[Ruth–Aaron pair]] with 2108 (first definition)
* '''2111''' – member of a Ruth–Aaron pair with 2106 (first definition)
* '''2108''' – member of a Ruth–Aaron pair with 2107 (first definition)
* '''2113''' – [[square pyramidal number]]<ref name=":11">{{Cite OEIS|1=A000330|2=Square pyramidal numbers|accessdate=2016-06-13}}</ref>
* '''2109''' – [[square pyramidal number]]<ref name=":11">{{Cite OEIS|1=A000330|2=Square pyramidal numbers|accessdate=2016-06-13}}</ref>
* '''2119''' – The break-through album of the band [[2112 (album)|Rush]]
* '''2112''' – The break-through album of the band [[2112 (album)|Rush]]
* '''2126''' – Mertens function zero, [[Proth prime]],<ref name=":12">{{Cite OEIS|1=A080076|2=Proth primes|accessdate=2016-06-13}}</ref> [[centered square number]]<ref name=":13">{{Cite OEIS|1=A001844|2=Centered square numbers|accessdate=2016-06-13}}</ref>
* '''2113''' – Mertens function zero, [[Proth prime]],<ref name=":12">{{Cite OEIS|1=A080076|2=Proth primes|accessdate=2016-06-13}}</ref> [[centered square number]]<ref name=":13">{{Cite OEIS|1=A001844|2=Centered square numbers|accessdate=2016-06-13}}</ref>
* '''2136''' – 46<sup>2</sup>
* '''2116''' – 46<sup>2</sup>
* '''2140''' – Mertens function zero
* '''2117''' – Mertens function zero
* '''2148''' – Mertens function zero
* '''2119''' – Mertens function zero
* '''2157''' – Mertens function zero
* '''2120''' – Mertens function zero
* '''2153''' – Mertens function zero
* '''2122''' – Mertens function zero
* '''2155''' – [[nonagonal number]]<ref name=":14">{{Cite OEIS|1=A001106|2=9-gonal (or enneagonal or nonagonal) numbers|accessdate=2016-06-13}}</ref>
* '''2125''' – [[nonagonal number]]<ref name=":14">{{Cite OEIS|1=A001106|2=9-gonal (or enneagonal or nonagonal) numbers|accessdate=2016-06-13}}</ref>
* '''2167''' – really a prime
* '''2127''' – sum of the first 34 primes
* '''2173''' – [[Sophie Germain prime]]
* '''2129''' – [[Sophie Germain prime]]
* '''2174''' – Mertens function zero
* '''2135''' – Mertens function zero
* '''2178''' – Mertens function zero
* '''2136''' – Mertens function zero
* '''2183''' – prime of the form 2p-1
* '''2137''' – prime of the form 2p-1
* '''2191''' – Mertens function zero
* '''2138''' – Mertens function zero
* '''2''' – [[Sophie Germain prime]]
* '''2141''' – [[Sophie Germain prime]]
* '''2142''' – sum of the totient function for the first 83 integers
* '''2142''' – sum of the totient function for the first 83 integers
* '''2143''' – almost exactly 22{{pi}}<sup>4</sup>
* '''2143''' – almost exactly 22{{pi}}<sup>4</sup>
Line 92: Line 92:
* '''2188''' – [[Motzkin number]]<ref>{{Cite OEIS|1=A001006|2=Motzkin numbers|accessdate=2016-06-13}}</ref>
* '''2188''' – [[Motzkin number]]<ref>{{Cite OEIS|1=A001006|2=Motzkin numbers|accessdate=2016-06-13}}</ref>
* '''2197''' – 13<sup>3</sup>, palindromic in base 12 (1331<sub>12</sub>)
* '''2197''' – 13<sup>3</sup>, palindromic in base 12 (1331<sub>12</sub>)
* '''2200''' – perfect totient number<ref name=":16" />
* '''2199''' – perfect totient number<ref name=":16" />


===2200 to 2300===
===2200 to 2299===
* '''2200''' – only known non-palindromic number whose [[cube]] is [[palindromic number|palindromic]]; also no known fourth or higher powers are palindromic for non-palindromic numbers
* '''2201''' – only known non-palindromic number whose [[cube]] is [[palindromic number|palindromic]]; also no known fourth or higher powers are palindromic for non-palindromic numbers
* '''2207''' – odd [[abundant number]]<ref name=":17">{{Cite OEIS|1=A005231|2=Odd abundant numbers|accessdate=2016-06-13}}</ref>
* '''2205''' – odd [[abundant number]]<ref name=":17">{{Cite OEIS|1=A005231|2=Odd abundant numbers|accessdate=2016-06-13}}</ref>
* '''2207''' – [[safe prime]],<ref name=":3" /> [[Lucas prime]]<ref>{{Cite OEIS|1=A005479|2=Prime Lucas numbers|accessdate=2016-06-13}}</ref>
* '''2207''' – [[safe prime]],<ref name=":3" /> [[Lucas prime]]<ref>{{Cite OEIS|1=A005479|2=Prime Lucas numbers|accessdate=2016-06-13}}</ref>
* '''2210''' – [[Keith number]]<ref name=":18">{{Cite OEIS|1=A007629|2=Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)|accessdate=2016-06-13}}</ref>
* '''2208''' – [[Keith number]]<ref name=":18">{{Cite OEIS|1=A007629|2=Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)|accessdate=2016-06-13}}</ref>
* '''2213''' – palindromic in base 14 (B3B<sub>14</sub>), centered octagonal number<ref name=":2" /> and prime
* '''2209''' – 47<sup>2</sup>, palindromic in base 14 (B3B<sub>14</sub>), centered octagonal number<ref name=":2" />
* '''2219''' – triangular number
* '''2211''' – triangular number
* '''2221''' – [[super-prime]], [[happy number]]
* '''2221''' – [[super-prime]], [[happy number]]
* '''2222''' [[repdigit]] palindrome
* '''2222''' [[repdigit]]
* '''2223''' – [[Kaprekar number]]<ref name=":19">{{Cite OEIS|1=A006886|2=Kaprekar numbers|accessdate=2016-06-13}}</ref>
* '''2223''' – [[Kaprekar number]]<ref name=":19">{{Cite OEIS|1=A006886|2=Kaprekar numbers|accessdate=2016-06-13}}</ref>
* '''2230''' – sum of the totient function for the first 85 integers
* '''2233 -''' 203 x 11 semiprime
* '''2234''' – decagonal number<ref name=":7" />
* '''2232''' – decagonal number<ref name=":7" />
* '''2238''' – first
* '''2236''' – Harshad Number
* '''2246''' – centered square number<ref name=":13" />
* '''2245''' – centered square number<ref name=":13" />
* '''2255''' – member of the Mian–Chowla sequence<ref name=":4" />
* '''2254''' – member of the Mian–Chowla sequence<ref name=":4" />
* '''2259''' – [[octahedral number]]<ref name=":20">{{Cite OEIS|1=A005900|2=Octahedral numbers|accessdate=2016-06-13}}</ref>
* '''2255''' – [[octahedral number]]<ref name=":20">{{Cite OEIS|1=A005900|2=Octahedral numbers|accessdate=2016-06-13}}</ref>
* '''2263''' – pronic number<ref name=":8" />
* '''2256''' – pronic number<ref name=":8" />
* '''2267''' – [[super-prime]], [[cuban prime]]<ref name=":21">{{Cite OEIS|1=A002407|2=Cuban primes|accessdate=2016-06-13}}</ref>
* '''2269''' – [[super-prime]], [[cuban prime]]<ref name=":21">{{Cite OEIS|1=A002407|2=Cuban primes|accessdate=2016-06-13}}</ref>
* '''2273''' – the 333rd prime
* '''2272''' – sum of the totient function for the first 86 integers
* '''2273''' – [[Sophie Germain prime]]
* '''2273''' – [[Sophie Germain prime]]
* '''2276''' – sum of the first 35 primes, centered heptagonal number<ref name=":10" />
* '''2276''' – sum of the first 35 primes, centered heptagonal number<ref name=":10" />
* '''2279''' – triangular prime
* '''2278''' – triangular number
* '''2281''' – [[star number]]
* '''2281''' – [[star number]]
* '''2287''' – [[balanced prime]]<ref name=":22">{{Cite OEIS|1=A006562|2=Balanced primes|accessdate=2016-06-13}}</ref>
* '''2287''' – [[balanced prime]]<ref name=":22">{{Cite OEIS|1=A006562|2=Balanced primes|accessdate=2016-06-13}}</ref>
* '''2294''' – Mertens function zero
* '''2295''' – Mertens function zero
* '''2296''' – Mertens function zero
* '''2296''' – Mertens function zero
* '''2299''' – member of a Ruth–Aaron pair with 2300 (first definition)
* '''2297''' – Mertens function zero
* '''2298''' – Mertens function zero
* '''2300''' – member of a Ruth–Aaron pair with 2300 (first definition)


===2300 to 2399===
===2300 to 2399===

Revision as of 14:10, 22 November 2020

← 1999 2000 2001 →
Cardinaltwo thousand
Ordinal2000th
(two thousandth)
Factorization24 × 53
Greek numeral,Β´
Roman numeralMM
Unicode symbol(s)MM, mm
Binary111110100002
Ternary22020023
Senary131326
Octal37208
Duodecimal11A812
Hexadecimal7D016

2000 (two thousand) is a natural number following 1999 and preceding 2001.

Two thousand is the highest number expressible using only two unmodified characters in Roman numerals (MM).

Selected numbers in the range 2001–2999

2001 to 2099

2100 to 2199

2200 to 2299

2300 to 2399

2400 to 2499

  • 2400 – perfect score on SAT tests administered after 2005
  • 2401 – 74, 492, centered octagonal number[4]
  • 2415 – triangular number
  • 2417super-prime, balanced prime[32]
  • 2425 – decagonal number[10]
  • 2427 – sum of the first 36 primes
  • 2431 – product of three consecutive primes
  • 2437 – cuban prime[31]
  • 2447safe prime[5]
  • 2450 – pronic number[11]
  • 2456 – sum of the totient function for the first 89 integers
  • 2458 – centered heptagonal number[13]
  • 2459Sophie Germain prime, safe prime[5]
  • 2465magic constant of n × n normal magic square and n-queens problem for n = 17, Carmichael number[38]
  • 2470 – square pyramidal number[14]
  • 2477super-prime, cousin prime
  • 2480 – sum of the totient function for the first 90 integers
  • 2481 – centered pentagonal number[7]
  • 2484 – nonagonal number[17]
  • 2485 – triangular number
  • 2491 – member of Ruth–Aaron pair with 2492 under second definition
  • 2492 – member of Ruth–Aaron pair with 2491 under second definition

2500 to 2599

  • 2500 – 502, palindromic in base 7 (102017)
  • 2501 – Mertens function zero
  • 2502 – Mertens function zero
  • 2510 – member of the Mian–Chowla sequence[6]
  • 2513 – member of the Padovan sequence[39]
  • 2517 – Mertens function zero
  • 2519 – the smallest number congruent to 1 (mod 2), 2 (mod 3), 3 (mod 4), ..., 9 (mod 10)
  • 2520superior highly composite number; smallest number divisible by numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 12 ; colossally abundant number; Harshad number in several bases. It is also the highest number with more divisors than any number less than double itself.(sequence A072938 in the OEIS) Not only is it the 7th (and last) number with more divisors than any number double itself but it also the 7th number that is highly composite and the lowest common multiple of a consecutive set of integers from 1 (sequence A095921 in the OEIS) which is a property the previous number with this pattern of divisors does not have (360). That is, although 360 and 2520 both have more divisors than any number twice themselves, 2520 is the lowest number divisible by both 1 to 9 and 1 to 10, whereas 360 is not the lowest number divisible by 1 to 6 (which 60 is) and is not divisible by 1 to 7 (which 420 is). It is also the 6th and largest highly composite number that is a divisor of every higher highly composite number.(sequence A106037 in the OEIS)
  • 2521star number, centered square number[16]
  • 2522 – Mertens function zero
  • 2523 – Mertens function zero
  • 2524 – Mertens function zero
  • 2525 – Mertens function zero
  • 2530 – Mertens function zero, Leyland number[18]
  • 2533 – Mertens function zero
  • 2537 – Mertens function zero
  • 2538 – Mertens function zero
  • 2543Sophie Germain prime
  • 2549Sophie Germain prime, super-prime
  • 2550 – pronic number[11]
  • 2552 – sum of the totient function for the first 91 integers
  • 2556 – triangular number
  • 2567 – Mertens function zero
  • 2568 – Mertens function zero. Also number of digits in the decimal expansion of 1000!, or the product of all natural numbers from 1 to 1000.
  • 2570 – Mertens function zero
  • 2579safe prime[5]
  • 2580Keith number[28]
  • 2584Fibonacci number,[40] sum of the first 37 primes
  • 2596 – sum of the totient function for the first 92 integers

2600 to 2699

2700 to 2799

  • 2701 – triangular number, super-Poulet number[8]
  • 2702 – sum of the totient function for the first 94 integers
  • 2704 – 522
  • 2719super-prime, largest known odd number which cannot be expressed in the form x2 + y2 + 10z2 where x, y and z are integers.[41] In 1997 it was conjectured that this is also the largest such odd number.[42] It is now known this is true if the generalized Riemann hypothesis is true.[43]
  • 2728Kaprekar number[29]
  • 2729 – highly cototient number[12]
  • 2731Wagstaff prime[44]
  • 2736 – octahedral number[30]
  • 2741Sophie Germain prime, 400th prime number
  • 2744 – 143, palindromic in base 13 (133113)
  • 2747 – sum of the first 38 primes
  • 2749super-prime, cousin prime with 2753
  • 2753Sophie Germain prime, Proth prime[15]
  • 2756 – pronic number
  • 2774 – sum of the totient function for the first 95 integers
  • 2775 – triangular number
  • 2780 – member of the Mian–Chowla sequence[6]
  • 2783 – member of a Ruth–Aaron pair with 2784 (first definition)
  • 2784 – member of a Ruth–Aaron pair with 2783 (first definition)
  • 2791 – cuban prime[31]

2800 to 2899

2900 to 2999

References

  1. ^ a b Sloane, N. J. A. (ed.). "Sequence A006972 (Lucas-Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A194472 (Erdős-Nicolas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  3. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  4. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  5. ^ a b c d e f g h i j k Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  6. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  7. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  8. ^ a b Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A003261 (Woodall numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  10. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  11. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  12. ^ a b c Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  13. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  14. ^ a b c Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  15. ^ a b c Sloane, N. J. A. (ed.). "Sequence A080076 (Proth primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  16. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  17. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  18. ^ a b Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A002411 (Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A008918 (Numbers n such that 4*n = (n written backwards))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  22. ^ Mackenzie, Dana (2018). "2184: An Absurd (and Adsurd) Tale". Integers. 18.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A014575 (Vampire numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  24. ^ a b Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  25. ^ Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  26. ^ a b Sloane, N. J. A. (ed.). "Sequence A005231 (Odd abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  27. ^ Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  28. ^ a b Sloane, N. J. A. (ed.). "Sequence A007629 (Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  29. ^ a b Sloane, N. J. A. (ed.). "Sequence A006886 (Kaprekar numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  30. ^ a b Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  31. ^ a b c Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  32. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  33. ^ Sloane, N. J. A. (ed.). "Sequence A002110 (Primorial numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  34. ^ "The Small Groups library". Archived from the original on 2007-02-04. Retrieved 2008-01-22..
  35. ^ Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  36. ^ Sloane, N. J. A. (ed.). "Sequence A069151 (Concatenations of consecutive primes, starting with 2, that are also prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  37. ^ Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  38. ^ a b Sloane, N. J. A. (ed.). "Sequence A002997 (Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  39. ^ Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  40. ^ Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  41. ^ "Odd numbers that are not of the form x^2+y^2+10*z^2". The Online Encyclopedia of Integer Sequences. The OEIS Foundation, Inc. Retrieved 13 November 2012.
  42. ^ Ono, Ken (1997). "Ramanujan, taxicabs, birthdates, zipcodes and twists" (PDF). American Mathematical Monthly. 104 (10): 912–917. CiteSeerX 10.1.1.514.8070. doi:10.2307/2974471. JSTOR 2974471. Retrieved 11 November 2012.
  43. ^ Ono, Ken; K Soundararajan (1997). "Ramanujan's ternary quadratic forms" (PDF). Inventiones Mathematicae. 130 (3): 415–454. CiteSeerX 10.1.1.585.8840. doi:10.1007/s002220050191. Archived from the original (PDF) on 18 July 2019. Retrieved 12 November 2012.
  44. ^ Sloane, N. J. A. (ed.). "Sequence A000979 (Wagstaff primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  45. ^ Sloane, N. J. A. (ed.). "Sequence A144974 (Centered heptagonal prime numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  46. ^ Sloane, N. J. A. (ed.). "Sequence A000078 (Tetranacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  47. ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  48. ^ Sloane, N. J. A. (ed.). "Sequence A001599 (Harmonic or Ore numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  49. ^ Sloane, N. J. A. (ed.). "Sequence A195163 (1000-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.