Jump to content

Dirichlet character: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Fixed formatting issues
Tag: Reverted
No edit summary
Line 1: Line 1:
{{Short description|Certain arithmetic functions}}
In [[analytic number theory]] and related branches of mathematics, a complex-valued [[arithmetic function]] <math>\chi:\mathbb{Z}\rightarrow\mathbb{C}</math> is a '''Dirichlet character of modulus <math>m</math>''' (where <math>m</math> is a positive integer) if for all integers <math>a</math> and <math>b</math>:<ref>This is the standard definition; e.g. Davenport p.27; Landau p. 109; Ireland and Rosen p. 253</ref>
{{more footnotes|date=October 2010}}
In [[mathematics]], specifically [[number theory]], '''Dirichlet characters''' are certain [[arithmetic function]]s which arise from [[completely multiplicative]] [[character theory|characters]] on the [[Unit (ring theory)|units]] of <math>\mathbb{Z}/k \mathbb{Z}</math>. Dirichlet characters are used to define [[Dirichlet L-function|Dirichlet ''L''-functions]], which are [[meromorphic function]]s with a variety of interesting analytic properties.


If <math>\chi</math> is a Dirichlet character, one defines its Dirichlet ''L''-series by
:1) &nbsp; <math>\chi(ab) = \chi(a)\chi(b);</math> &nbsp; i.e. <math>\chi</math> is [[Completely multiplicative function|completely multiplicative]].


:<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}</math>
:2) &nbsp; <math>
\chi(a)
\begin{cases}
=0 &\text{if }\; \gcd(a,m)>1\\
\ne 0&\text{if }\;\gcd(a,m)=1.
\end{cases}</math>


where ''s'' is a [[complex number]] with [[Complex number|real part]] > 1. By [[analytic continuation]], this [[Function (mathematics)|function]] can be extended to a meromorphic function on the whole [[complex plane]]. Dirichlet ''L''-functions are generalizations of the [[Riemann zeta function|Riemann zeta-function]] and appear prominently in the [[generalized Riemann hypothesis]].
:3) &nbsp; <math>\chi(a + m) = \chi(a)</math>; i.e. <math>\chi</math> is periodic with period <math>m</math>.
The simplest possible character, called the '''principal character''', usually denoted <math>\chi_0</math>, (see [[#Notation|Notation]] below) exists for all moduli:<ref>Note the special case of modulus 1: the unique character mod 1 is the constant 1; all other characters are 0 at 0</ref>
:<math>
\chi_0(a)=
\begin{cases}
0 &\text{if }\; \gcd(a,m)>1\\
1 &\text{if }\;\gcd(a,m)=1.
\end{cases}</math>
[[Peter Gustav Lejeune Dirichlet|Dirichlet]] introduced these functions in his 1837 paper on [[Dirichlet's theorem on arithmetic progressions|primes in arithmetic progressions]].<ref>Davenport p. 1</ref><ref>An English translation is in External Links</ref>


Dirichlet characters are named in honour of [[Peter Gustav Lejeune Dirichlet]]. They were later generalized by [[Erich Hecke]] to [[Hecke character]]s (also known as Grössencharacter).
== Notation ==


==Axiomatic definition==
<math>\phi(n)</math> is the [[Euler totient function]].
We say that a [[function (mathematics)|function]] <math>\chi</math> from the [[integer]]s <math> \mathbb{Z} </math> to the [[complex number]]s <math> \mathbb{C} </math> is a Dirichlet character
if it has the following properties:<ref name=MV1178>{{harvnb|Montgomery|Vaughan|2007|pp=117–8}}</ref>


#There exists a positive integer ''k'' such that χ(''n'') = χ(''n''&thinsp;+&thinsp;''k'') for all integers ''n''.
<math>\zeta_n</math> is a complex primitive [[Root of unity|n-th root of unity]]:
#If the [[greatest common divisor]] gcd(''n'',&thinsp;''k'') is larger than 1 then χ(''n'') = 0; if gcd(''n'',&thinsp;''k'') = 1 then χ(''n'') ≠ 0.
:<math>
#χ(''mn'') = χ(''m''){{space|hair}}χ(''n'') for all integers ''m'' and ''n''.
\zeta_n^n=1,</math> but <math>\zeta_n\ne 1, \zeta_n^2\ne 1, ... \zeta_n^{n-1}\ne 1.</math>
From this definition, several other properties can be deduced.
By property 3, χ(1) = χ(1&thinsp;×&thinsp;1) = χ(1){{space|hair}}χ(1). Since gcd(1,&thinsp;''k'') = 1, property 2 says χ(1) ≠ 0, so
<ol start=4><li>χ(1) = 1.</li></ol>
Properties 3 and 4 show that every Dirichlet character χ is [[completely multiplicative]].


Property 1 says that a character is [[periodic function|periodic]] with period ''k''; we say that <math>\chi</math> is a character to the '''modulus''' ''k''. This is equivalent to saying that
<math>(\mathbb{Z}/m\mathbb{Z})^\times</math> is the [[Multiplicative group of integers modulo n|group of units mod <math>m</math>]]. It has order <math>\phi(m).</math>
<ol start=5><li>If ''a'' ≡ ''b'' (mod ''k'') then χ(''a'') = χ(''b''). </li></ol>
If gcd(''a'',&thinsp;''k'') = 1, [[Euler's theorem]] says that ''a''<sup>φ(''k'')</sup> ≡ 1 (mod ''k'') (where φ(''k'') is the [[totient function]]). Therefore, by properties 5 and 4, χ(''a''<sup>φ(''k'')</sup>) = χ(1) = 1, and by 3, χ(''a''<sup>φ(''k'')</sup>) =χ(''a'')<sup>φ(''k'')</sup>. So
<ol start=6><li>For all ''a'' [[relatively prime]] to ''k'', χ(''a'') is a φ(''k'')-th complex [[root of unity]], i.e. <math>e^{2ri\pi/ \varphi(k)}</math> for some integer 0 ≤ ''r'' < φ(''k'').</li></ol>


A character is called '''principal''' (or '''trivial''') if it assumes the value 1 for arguments coprime to its modulus and otherwise is 0.<ref name=MV115>{{harvnb|Montgomery|Vaughan|2007|p=115}}</ref> A character is called '''real''' if all of its values are real (i.e. χ(''n'') is 0, 1, or -1 for all ''n''). A non-principal real character is also called '''quadratic'''. A character which is not real is called '''complex'''.<ref name=MV123>{{harvnb|Montgomery|Vaughan|2007|p=123}}</ref>
<math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}</math> is the group of Dirichlet characters mod <math>m</math>.


The '''sign''' of the character <math>\chi</math> depends on its value at &minus;1. Specifically, <math>\chi</math> is said to be '''odd''' if <math>\chi (-1) = -1</math> and '''even''' if <math>\chi (-1) = 1</math>.
<math>p, \;p_k,</math> etc. are [[prime number]]s.


==Construction via residue classes==
<math>(m,n)</math> is a standard<ref>Used in Davenport, Landau, Ireland and Rosen</ref> abbreviation<ref><math>(rs,m)=1</math> is equivalent to <math>\gcd(r,m)=\gcd(s,m)=1</math></ref> for <math>\gcd(m,n)</math>


Dirichlet characters may be viewed in terms of the [[character group]] of the [[group of units]] of the [[Ring (mathematics)|ring]] '''Z'''/''k'''''Z''', as ''extended residue class characters''.<ref>{{harvnb|Fröhlich|Taylor|1991|p=218}}</ref>
<math>\chi(a),\;\chi'(a),\;\chi_r(a),</math> etc. are Dirichlet characters. (the lowercase Greek letter chi for character)


=== Residue classes ===
There is no standard notation for Dirichlet characters that includes the modulus. In many contexts (such as in the proof of Dirichlet's theorem) the modulus is fixed. In other contexts, such as this article, characters of different moduli appear. Where appropriate this article employs a variation of [https://lmfdb.org/knowledge/show/character.dirichlet.conrey Conrey labeling] (introduced by [[Brian Conrey]] and used by the [https://www.lmfdb.org/ LMFDB]).
Given an integer ''k'', one defines the '''residue class''' of an integer ''n'' as the set of all integers congruent to ''n'' [[modular arithmetic|modulo]] ''k'':
<math>\hat{n} = \{x \mid x \equiv n\ (\text{mod}\ k)\}.</math>
That is, the residue class <math>\hat{n}</math> is the [[coset]] of ''n'' in the [[quotient ring]] '''Z'''/''k'''''Z'''.


The set of units modulo ''k'' forms an [[abelian group]] of order <math>\varphi(k)</math>, where group multiplication is given by
In this labeling characters for modulus <math>m</math> are denoted <math>\chi_{m,\; t}(a)</math> where the index <math>t</math> is described in the section [[#The group of characters|the group of characters]] below. In this labeling, <math>\chi_{m,\;\_}(a)</math> denotes an unspecified character and
<math>\chi_{m,\;1}(a)</math> denotes the principal character mod <math>m</math>.
<math>\widehat{mn}=\hat{m}\hat{n}</math> and <math>\varphi</math>
again denotes [[Euler's phi function]].
The identity in this group is the residue class <math>\hat{1}</math> and the inverse of <math>\hat{m}</math> is the residue class <math>\hat{n}</math> where
<math>\hat{m} \hat{n} = \hat{1}</math>, i.e., <math>m n \equiv 1 \mod k</math>. For example, for ''k''=6, the set of units is <math>\{\hat{1}, \hat{5}\}</math> because 0, 2, 3, and 4 are not coprime to 6.


The character group of ('''Z'''/''k'')<sup>*</sup> consists of the ''residue class characters''. A residue class character θ on ('''Z'''/''k'')<sup>*</sup> is '''primitive''' if there is no proper divisor ''d'' of ''k'' such that θ factors as a map ('''Z'''/''k'')<sup>*</sup> → ('''Z'''/''d'')<sup>*</sup> → '''C'''<sup>*</sup>, where the first arrow is the natural "modding ''d''{{space|hair}}" map.<ref name=FT215>{{harvnb|Fröhlich|Taylor|1991|p=215}}</ref>
== Relation to group characters ==


===Dirichlet characters===
The word "[[Character (mathematics)|character]]" is used several ways in mathematics. In this section it refers to a [[homomorphism]] from a group <math>G</math> (written multiplicatively) to the multiplicative group of the field of complex numbers:
The definition of a Dirichlet character modulo ''k'' ensures that it restricts to a [[Character group|character]] of the unit group modulo ''k'':<ref name=A139>{{harvnb|Apostol|1976|p=139}}</ref> a group homomorphism <math>\chi</math> from ('''Z'''/''k'''''Z''')<sup>*</sup> to the non-zero complex numbers
:<math>\eta:\;G\rightarrow \mathbb{C}^\times,\;\;\eta(gh)=\eta(g)\eta(h),\;\;\eta(g^{-1})=\eta(g)^{-1}.</math>


:<math> \chi : (\mathbb{Z}/k\mathbb{Z})^* \to \mathbb{C}^* </math>,
The set of characters is denoted <math>\widehat{G}.</math> If the product of two characters is defined by pointwise multiplication <math>\eta\theta(a)=\eta(a)\theta(a),</math> the identity by the trivial character <math>\eta_0(a)=1</math> and the inverse by complex inversion <math>\eta^{-1}(a)=\eta(a)^{-1}</math> then <math>\widehat{G}</math> becomes an abelian group.<ref>See [[Multiplicative character]]</ref>


with values that are necessarily roots of unity since the units modulo ''k'' form a finite group. In the opposite direction, given a group homomorphism <math>\chi</math> on the unit group modulo ''k'', we can [[Lift (mathematics)|lift]] to a [[completely multiplicative]] function on integers relatively prime to ''k'' and then extend this function to all integers by defining it to be 0 on integers having a non-trivial factor in common with ''k''. The resulting function will then be a Dirichlet character.<ref name=A138>{{harvnb|Apostol|1976|p=138}}</ref>
If <math>A</math> is a [[abelian group#Finite abelian groups|finite abelian group]] then<ref name="IR">Ireland and Rosen p. 253-254</ref> there are 1) an [[isomorphism]] <math>A\cong\widehat{A}</math> and 2) the orthogonality relations:<ref>See [[Character group#Orthogonality of characters]]</ref>


The '''principal character''' <math>\chi_0</math> modulo ''k'' has the properties<ref name=A138/>
:<math>\sum_{a\in A} \eta(a)=


:<math>\chi_0(n)=1</math> if gcd(''n'', ''k'') = 1 and
\begin{cases}
:<math>\chi_0(n)=0</math> if gcd(''n'', ''k'') > 1.
|A|&\text{ if }\;\eta=\eta_0\\
0&\text{ if }\;\eta\ne\eta_0
\end{cases}
</math> &nbsp; &nbsp; and &nbsp; &nbsp; <math>\sum_{\eta\in\widehat{A}}\eta(a)=
\begin{cases}
|A|&\text{ if }\;a=1\\
0&\text{ if }\;a\ne 1.
\end{cases}
</math>


The associated character of the multiplicative group ('''Z'''/''k'''''Z''')<sup>*</sup> is the ''principal'' character which always takes the value 1.<ref name=A134>{{harvnb|Apostol|1976|p=134}}</ref>
The elements of the finite abelian group <math>(\mathbb{Z}/m\mathbb{Z})^\times</math> are the residue classes <math>[x]=\{y:y\equiv x\pmod m\}</math> where <math>(x,m)=1.\;</math>


When ''k'' is 1, the principal character modulo ''k'' is equal to 1 at all integers. For ''k'' greater than 1, the principal character modulo ''k'' vanishes at integers having a non-trivial common factor with ''k'' and is 1 at other integers.
A group character <math>\rho:(\mathbb{Z}/m\mathbb{Z})^\times\rightarrow \mathbb{C}^\times</math> can be extended to a Dirichlet character <math>\chi:\mathbb{Z}\rightarrow \mathbb{C}</math> by defining
:<math>
\chi(a)=
\begin{cases}
0 &\text{if }\; [a]\not\in(\mathbb{Z}/m\mathbb{Z})^\times&\text{i.e. }(a,m)> 1\\
\rho([a])&\text{if }\;[a]\in(\mathbb{Z}/m\mathbb{Z})^\times&\text{i.e. }(a,m)= 1,
\end{cases}</math>


There are φ(''n'') Dirichlet characters modulo ''n''.<ref name=A138/>
and conversely, a Dirichlet character mod <math>m</math> defines a group character on <math>(\mathbb{Z}/m\mathbb{Z})^\times.</math>


==A few character tables==
Paraphrasing Davenport<ref>Davenport p. 27</ref> Dirichlet characters can be regarded as a particular case of Abelian group characters. But this article follows Dirichlet in giving a direct and constructive account of them. This is partly for historical reasons, in that Dirichlet's work preceded by several decades the development of group theory, and partly for a mathematical reason, namely that the group in question has a simple and interesting structure which is obscured if one treats it as one treats the general Abelian group.
The tables below help illustrate the nature of a Dirichlet character. They present all of the characters from modulus 1 to modulus 12. The characters χ<sub>0</sub> are the principal characters.


===Modulus 1===
== Elementary facts ==
There is <math>\varphi(1)=1</math> character modulo 1:


:{| class="wikitable" style="text-align:right;"
4) Since <math>\gcd(1,m)=1,</math> property 2) says <math>\;\chi(1)\ne 0</math> so it can be canceled from both sides of <math>\chi(1)\chi(1)=\chi(1\times 1) =\chi(1)</math>:
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 1
|}


Note that χ is wholly determined by χ(0) since 0 generates the group of units modulo 1.
:<math>\chi(1)=1.</math><ref>These properties are derived in all introductions to the subject, e.g. Davenport p. 27, Landau p. 109.</ref>


The Dirichlet ''L''-series for <math>\chi_0(n)</math> is the [[Riemann zeta function]]
5) Property 3) is equivalent to
: <math>\zeta(s) = \sum_{n=1}^{\infty}{\frac{1}{n^s}} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots</math>.


===Modulus 2===
:if <math>a \equiv b \pmod{m}</math> &nbsp; then <math>\chi(a) =\chi(b).</math>
There is <math>\varphi(2)=1</math> character modulo 2:


:{| class="wikitable" style="text-align:right;"
6) Property 1) implies that, for any positive integer <math>n</math>
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
:<math>\chi(a^n)=\chi(a)^n.</math>
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
|}


Note that χ is wholly determined by χ(1) since 1 generates the group of units modulo 2.
7) [[Euler's theorem]] states that if <math>(a,m)=1</math> then <math>a^{\phi(m)}\equiv 1 \pmod{m}.</math> Therefore,
:<math>\chi(a)^{\phi(m)}=\chi(a^{\phi(m)})=\chi(1)=1.</math>


The Dirichlet ''L''-series for <math>\chi_0(n)</math> is
That is, the nonzero values of <math>\chi(a)</math> are <math>\phi(m)</math>-th [[root of unity|roots of unity]]:
the Dirichlet lambda function (closely related to the [[Dirichlet eta function]])


:<math>L(s, \chi_0) = (1-2^{-s})\zeta(s)\, </math>
:<math>
\chi(a)=
\begin{cases}
0 &\text{if }\; \gcd(a,m)>1\\
\zeta_{\phi(m)}^r&\text{if }\;\gcd(a,m)=1
\end{cases}</math>


===Modulus 3===
for some integer <math>r</math> which depends on <math>\chi, \;\zeta,</math> and <math>a</math>. This implies there are only a finite number of characters for a given modulus.
There are <math>\varphi(3)=2</math> characters modulo 3:


:{| class="wikitable" style="text-align:right;"
8) If <math>\chi</math> and <math>\chi'</math> are two characters for the same modulus so is their product <math>\chi\chi',</math> defined by pointwise multiplication:
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
:<math>\chi\chi'(a) = \chi(a)\chi'(a)</math> &nbsp; (<math>\chi\chi'</math> obviously satisfies 1-3).<ref>In general, the product of a character mod <math>m</math> and a character mod <math>n</math> is a character mod <math>\operatorname{lcm}(m,n)</math></ref>
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| &minus;1
|}


Note that χ is wholly determined by χ(2) since 2 generates the group of units modulo 3.
The principal character is an identity:
:<math>
\chi\chi_0(a)=\chi(a)\chi_0(a)=
\begin{cases}
0 \times 0 &=\chi(a)&\text{if }\; \gcd(a,m)>1\\
\chi(a)\times 1&=\chi(a) &\text{if }\;\gcd(a,m)=1.
\end{cases}</math>


===Modulus 4===
9) Let <math>a^{-1}</math> denote the inverse of <math>a</math> in <math>(\mathbb{Z}/m\mathbb{Z})^\times</math>.
There are <math>\varphi(4)=2</math> characters modulo 4:
Then
:<math>\chi(a)\chi(a^{-1})=\chi(aa^{-1})=\chi(1)=1,
</math> so <math>\chi(a^{-1})=\chi(a)^{-1},\;</math> which extends 6) to all integers.


:{| class="wikitable" style="text-align:right;"
The [[complex conjugate]] of a root of unity is also its inverse (see [[root of unity#Elementary properties|here]] for details), so for <math>(a,m)=1</math>
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
:<math>\overline{\chi}(a)=\chi(a)^{-1}=\chi(a^{-1}). </math> &nbsp; (<math>\overline\chi</math> also obviously satisfies 1-3).
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 0
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| 0
| &minus;1
|}


Note that χ is wholly determined by χ(3) since 3 generates the group of units modulo 4.
Thus for all integers <math>a</math>
:<math>
\chi(a)\overline{\chi}(a)=
\begin{cases}
0 &\text{if }\; \gcd(a,m)>1\\
1 &\text{if }\;\gcd(a,m)=1
\end{cases}; </math> &nbsp; in other words <math>\chi\overline{\chi}=\chi_0</math>.&nbsp;


The Dirichlet ''L''-series for <math>\chi_0(n)</math> is
10) The multiplication and identity defined in 8) and the inversion defined in 9) turn the set of Dirichlet characters for a given modulus into a [[abelian group#Finite abelian groups|finite abelian group]].
the Dirichlet lambda function (closely related to the [[Dirichlet eta function]])


:<math>L(s, \chi_0) = (1-2^{-s})\zeta(s)\, </math>
== The group of characters ==


where <math>\zeta(s)</math> is the Riemann zeta-function. The ''L''-series for <math>\chi_1(n)</math> is the [[Dirichlet beta function|Dirichlet beta-function]]
There are three different cases because the groups <math>(\mathbb{Z}/m\mathbb{Z})^\times</math> have different structures depending on whether <math>m</math> is a power of 2, a power of an odd prime, or the product of prime powers.<ref>Except for the use of the modified Conrie labeling, this section follows Davenport pp. 1-3, 27-30</ref>


:<math>L(s, \chi_1) = \beta(s).\, </math>
=== Powers of odd primes ===


===Modulus 5===
If <math>q=p^k</math> is an odd number <math>(\mathbb{Z}/q\mathbb{Z})^\times</math> is cyclic of order <math>\phi(q)</math>; a generator is called a [[Primitive root modulo n|primitive root]] mod <math>q</math>.<ref>There is a primitive root mod <math>p</math> which is a primitive root mod <math>p^2</math> and all higher powers of <math>p</math>. See, e.g., Landau p. 106</ref>
There are <math>\varphi(5)=4</math> characters modulo 5. In the table below, ''i'' is the [[imaginary unit]].
Let <math>g_q</math> be a primitive root and for <math>(a,q)=1</math> define the function <math>\nu_q(a)</math> (the '''index''' of <math>a</math>) by
:<math>a\equiv g_q^{\nu_q(a)}\pmod {q},</math>
:<math>0\le\nu_q<\phi(q).\;\;</math>
For <math>(ab,q)=1,\;\;a \equiv b\pmod{q}\;\;</math> if and only if <math>\;\nu_q(a)=\nu_q(b).</math> Since
:<math>\chi(a)=\chi(g_q^{\nu_q(a)})=\chi(g_q)^{\nu_q(a)},</math> &nbsp; <math>\chi</math> is deternined by its value at <math>g_q.</math>


:{| class="wikitable" style="text-align:right;"
Let <math>\omega_q= \zeta_{\phi(q)}</math> be a primitive <math>\phi(q)</math>-th root of unity. From property 7) above the possible values of <math> \chi(g_q)</math> are
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
<math> \omega_q, \omega_q^2, ... \omega_q^{\phi(q)}=1.</math> These distinct values give rise to <math>\phi(q)</math> Dirichlet characters mod <math>q.</math> For <math>(r,q)=1</math> define <math>\chi_{q,\;r}(a)</math> as
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
:<math>
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
\chi_{q,\;r}(a)=
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
\begin{cases}
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
0 &\text{if }\; \gcd(a,q)>1\\
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
\omega_q^{\nu_q(r)\nu_q(a)}&\text{if }\;\gcd(a,q)=1.
|-
\end{cases}</math>
| <math>\chi_0(n)</math>
| 0
| 1
| 1
| 1
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| ''i''
| &minus;''i''
| &minus;1
|-
| <math>\chi_2(n)</math>
| 0
| 1
| &minus;1
| &minus;1
| 1
|-
| <math>\chi_3(n)</math>
| 0
| 1
| &minus;''i''
| ''i''
| &minus;1
|}


Note that χ is wholly determined by either χ(2) or χ(3) since 2 generates the group of units modulo 5 and so does 3.
Then for <math>(rs,q)=1</math> and all <math>a</math> and <math>b</math>
:<math>\chi_{q,\;r}(a)\chi_{q,\;r}(b)=\chi_{q,\;r}(ab),</math> showing that <math>\chi_{q,\;r}</math> is a character and
:<math>\chi_{q,\;r}(a)\chi_{q,\;s}(a)=\chi_{q,\;rs}(a),</math> which gives an explicit isomorphism <math>\widehat{(\mathbb{Z}/p^k\mathbb{Z})^\times}\cong(\mathbb{Z}/p^k\mathbb{Z})^\times.</math>


===Modulus 6===
==== Examples '''''m''''' = 3, 5, 7, 9 ====
2 is a primitive root mod 3. &nbsp; (<math>\phi(3)=2</math>)
There are <math>\varphi(6)=2</math> characters modulo 6:
:<math>2^1\equiv 2,\;2^2\equiv2^0\equiv 1\pmod{3},</math>
so the values of <math>\nu_3</math> are
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
a & 1 & 2 \\
\hline
\nu_3(a) & 0 & 1\\
\end{array}
</math>.
The nonzero values of the characters mod 3 are
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& 1 & 2 \\
\hline
\chi_{3,\;1} & 1 & 1 \\
\chi_{3,\;2} & 1 & -1 \\
\end{array}
</math>


:{| class="wikitable" style="text-align:right;"
2 is a primitive root mod 5. &nbsp; (<math>\phi(5)=4</math>)
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
:<math>2^1\equiv 2,\;2^2\equiv 4,\;2^3\equiv 3,\;2^4\equiv2^0\equiv 1\pmod{5},</math>
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
so the values of <math>\nu_5</math> are
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
:<math>
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
\begin{array}{|c|c|c|c|c|c|c|}
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
a & 1 & 2 & 3 & 4 \\
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
\hline
| &nbsp;&nbsp;'''5'''&nbsp;&nbsp;
\nu_5(a) & 0 & 1 & 3 & 2 \\
|-
\end{array}
</math>.
| <math>\chi_0(n)</math>
| 0
The nonzero values of the characters mod 5 are
| 1
:<math>
| 0
\begin{array}{|c|c|c|c|c|c|c|}
| 0
& 1 & 2 & 3 & 4 \\
| 0
\hline
| 1
\chi_{5,\;1} & 1 & 1 & 1 & 1 \\
|-
\chi_{5,\;2} & 1 & i & -i & -1\\
| <math>\chi_1(n)</math>
\chi_{5,\;3} & 1 & -i & i & -1\\
| 0
\chi_{5,\;4} & 1 & -1 & -1 & 1\\
| 1
\end{array}
| 0
</math>
| 0
| 0
| &minus;1
|}


Note that χ is wholly determined by χ(5) since 5 generates the group of units modulo 6.
3 is a primitive root mod 7. &nbsp; (<math>\phi(7)=6</math>)
:<math>3^1\equiv 3,\;3^2\equiv 2,\;3^3\equiv 6,\;3^4\equiv 4,\;3^5\equiv 5,\;3^6\equiv3^0\equiv 1\pmod{7},</math>
so the values of <math>\nu_7</math> are
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
a & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\nu_7(a) & 0 & 2 & 1 & 4 & 5 & 3 \\
\end{array}
</math>.
The nonzero values of the characters mod 7 are (<math>\omega=\zeta_6, \;\;\omega^3=-1</math>)
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\chi_{7,\;1} & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{7,\;2} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\
\chi_{7,\;3} & 1 & \omega^2 & \omega & -\omega & -\omega^2 & -1 \\
\chi_{7,\;4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\
\chi_{7,\;5} & 1 & -\omega & -\omega^2 & \omega^2 & \omega & -1 \\
\chi_{7,\;6} & 1 & 1 & -1 & 1 & -1 & -1 \\
\end{array}
</math>.


===Modulus 7===
2 is a primitive root mod 9. &nbsp; (<math>\phi(9)=6</math>)
There are <math>\varphi(7)=6</math> characters modulo 7. In the table below, <math>\omega=e^{i\pi/3}.</math>
:<math>2^1\equiv 2,\;2^2\equiv 4,\;2^3\equiv 8,\;2^4\equiv 7,\;2^5\equiv 5,\;2^6\equiv2^0\equiv 1\pmod{9},</math>
so the values of <math>\nu_9</math> are
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
a & 1 & 2 &4 & 5&7&8 \\
\hline
\nu_9(a) & 0 & 1 & 2 & 5&4&3 \\
\end{array}
</math>.
The nonzero values of the characters mod 9 are (<math>\omega=\zeta_6, \;\;\omega^3=-1</math>)
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& 1 & 2 & 4 & 5 &7 & 8 \\
\hline
\chi_{9,\;1} & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{9,\;2} & 1 & \omega & \omega^2 & -\omega^2 & -\omega & -1 \\
\chi_{9,\;4} & 1 & \omega^2 & -\omega & -\omega & \omega^2 & 1 \\
\chi_{9,\;5} & 1 & -\omega^2 & -\omega & \omega & \omega^2 & -1 \\
\chi_{9,\;7} & 1 & -\omega & \omega^2 & \omega^2 & -\omega & 1 \\
\chi_{9,\;8} & 1 & -1 & 1 & -1 & 1 & -1 \\
\end{array}
</math>.


:{| class="wikitable" style="text-align:right;"
=== Powers of 2 ===
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''5'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''6'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 1
| 1
| 1
| 1
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| ω<sup>2</sup>
| ω
| &minus;ω
| &minus;ω<sup>2</sup>
| &minus;1
|-
| <math>\chi_2(n)</math>
| 0
| 1
| &minus;ω
| ω<sup>2</sup>
| ω<sup>2</sup>
| &minus;ω
| 1
|-
| <math>\chi_3(n)</math>
| 0
| 1
| 1
| &minus;1
| 1
| &minus;1
| &minus;1
|-
| <math>\chi_4(n)</math>
| 0
| 1
| ω<sup>2</sup>
| &minus;ω
| &minus;ω
| ω<sup>2</sup>
| 1
|-
| <math>\chi_5(n)</math>
| 0
| 1
| &minus;ω
| &minus;ω<sup>2</sup>
| ω<sup>2</sup>
| ω
| &minus;1
|}


Note that χ is wholly determined by χ(3) since 3 generates the group of units modulo 7.
<math>(\mathbb{Z}/2\mathbb{Z})^\times</math> is the trivial group with one element. <math>(\mathbb{Z}/4\mathbb{Z})^\times</math> is cyclic of order 2. For 8, 16, and higher powers of 2, there is no primitive root; the powers of 5 are the units <math>\equiv 1\pmod{4}</math> and their negatives are the units <math>\equiv 3\pmod{4}.</math><ref>Landau pp. 107-108</ref>
For example
:<math>5^1\equiv 5,\;5^2\equiv5^0\equiv 1\pmod{8}</math>
:<math>5^1\equiv 5,\;5^2\equiv 9,\;5^3\equiv 13,\;5^4\equiv5^0\equiv 1\pmod{16}</math>
:<math>5^1\equiv 5,\;5^2\equiv 25,\;5^3\equiv 29,\;5^4\equiv 17,\;5^5\equiv 21,\;5^6\equiv 9,\;5^7\equiv 13,\;5^8\equiv5^0\equiv 1\pmod{32}.</math>
Let <math>q=2^k, \;\;k\ge3</math>; then <math>(\mathbb{Z}/q\mathbb{Z})^\times</math> is the direct product of a cyclic group of order 2 (generated by −1) and a cyclic group of order <math>\frac{\phi(q)}{2}</math> (generated by 5).
For odd numbers <math>a</math> define the functions <math>\nu_0</math> and <math>\nu_q</math> by
:<math>a\equiv(-1)^{\nu_0(a)}5^{\nu_q(a)}\pmod{q},</math>
:<math>0\le\nu_0<2,\;\;0\le\nu_q<\frac{\phi(q)}{2}.</math>
For odd <math>a</math> and <math>b, \;\;a\equiv b\pmod{q}\;\;</math> if and only if <math>\;\nu_0(a)=\nu_0(b)</math> and <math>\nu_q(a)=\nu_q(b).</math>
For odd <math>a</math> the value of <math> \chi(a)</math> is determined by the values of <math> \chi(-1)</math> and <math>\chi(5).</math>


===Modulus 8===
Let <math>\omega_q = \zeta_{\frac{\phi(q)}{2}}</math> be a primitive <math>\frac{\phi(q)}{2}</math>-th root of unity. The possible values of <math> \chi((-1)^{\nu_0(a)}5^{\nu_q(a)})</math> are
There are <math>\varphi(8)=4</math> characters modulo 8.
<math> \pm\omega_q, \pm\omega_q^2, ... \pm\omega_q^{\frac{\phi(q)}{2}}=\pm1.</math> These distinct values give rise to <math>\phi(q)</math> Dirichlet characters mod <math>q.</math> For odd <math>r </math> define <math>\chi_{q,\;r}(a)</math> by
:<math>
\chi_{q,\;r}(a)=
\begin{cases}
0 &\text{if }\; a\text{ is even}\\
(-1)^{\nu_0(r)\nu_0(a)}\omega_q^{\nu_q(r)\nu_q(a)}&\text{if }\;a\text{ is odd}.
\end{cases}</math>
Then for odd <math>r</math> and <math>s</math> and all <math>a</math> and <math>b</math>
:<math>\chi_{q,\;r}(a)\chi_{q,\;r}(b)=\chi_{q,\;r}(ab)</math> showing that <math>\chi_{q,\;r}</math> is a character and
:<math>\chi_{q,\;r}(a)\chi_{q,\;s}(a)=\chi_{q,\;rs}(a)</math> showing that <math>\widehat{(\mathbb{Z}/2^{k}\mathbb{Z})^\times}\cong (\mathbb{Z}/2^{k}\mathbb{Z})^\times.</math>


:{| class="wikitable" style="text-align:right;"
==== Examples '''''m''''' = 2, 4, 8, 16 ====
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''5'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''6'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''7'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| 0
| 1
| 0
| &minus;1
| 0
| &minus;1
|-
| <math>\chi_2(n)</math>
| 0
| 1
| 0
| &minus;1
| 0
| 1
| 0
| &minus;1
|-
| <math>\chi_3(n)</math>
| 0
| 1
| 0
| &minus;1
| 0
| &minus;1
| 0
| 1
|}


Note that χ is wholly determined by χ(3) and χ(5) since 3 and 5 generate the group of units modulo 8.
The only character mod 2 is the principal character <math>\chi_{2,\;1}</math>.


===Modulus 9===
−1 is primitive root mod 4 (<math>\phi(4)=2</math>)
There are <math>\varphi(9)=6</math> characters modulo 9. In the table below, <math>\omega=e^{i\pi/3}.</math>


:{| class="wikitable" style="text-align:right;"
:<math>
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
\begin{array}{|||}
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
a & 1 & 3 \\
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
\hline
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
\nu_0(a) & 0 & 1 \\
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
\end{array}
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
</math>
| &nbsp;&nbsp;'''5'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''6'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''7'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''8'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 1
| 0
| 1
| 1
| 0
| 1
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| ω
| 0
| ω<sup>2</sup>
| &minus;ω<sup>2</sup>
| 0
| &minus;ω
| &minus;1
|-
| <math>\chi_2(n)</math>
| 0
| 1
| ω<sup>2</sup>
| 0
| &minus;ω
| &minus;ω
| 0
| ω<sup>2</sup>
| 1
|-
| <math>\chi_3(n)</math>
| 0
| 1
| &minus;1
| 0
| 1
| &minus;1
| 0
| 1
| &minus;1
|-
| <math>\chi_4(n)</math>
| 0
| 1
| &minus;ω
| 0
| ω<sup>2</sup>
| ω<sup>2</sup>
| 0
| &minus;ω
| 1
|-
| <math>\chi_5(n)</math>
| 0
| 1
| &minus;ω<sup>2</sup>
| 0
| &minus;ω
| ω
| 0
| ω<sup>2</sup>
| &minus;1
|}


Note that χ is wholly determined by χ(2) since 2 generates the group of units modulo 9.
The nonzero values of the characters mod 4 are
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& 1 & 3 \\
\hline
\chi_{4,\;1} & 1 & 1 \\
\chi_{4,\;3} & 1 & -1 \\


===Modulus 10===
\end{array}
There are <math>\varphi(10)=4</math> characters modulo 10. In the table below, ''i'' is the [[imaginary unit]].
</math>


:{| class="wikitable" style="text-align:right;"
−1 is and 5 generate the units mod 8 (<math>\phi(8)=4</math>)
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''5'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''6'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''7'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''8'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''9'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 1
| 0
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| 0
| ''i''
| 0
| 0
| 0
| &minus;''i''
| 0
| &minus;1
|-
| <math>\chi_2(n)</math>
| 0
| 1
| 0
| &minus;1
| 0
| 0
| 0
| &minus;1
| 0
| 1
|-
| <math>\chi_3(n)</math>
| 0
| 1
| 0
| &minus;''i''
| 0
| 0
| 0
| ''i''
| 0
| &minus;1
|}


Note that χ is wholly determined by χ(3) since 3 generates the group of units modulo 10.
:<math>
\begin{array}{|||}
a & 1 & 3 & 5 & 7 \\
\hline
\nu_0(a) & 0 & 1 & 0 & 1 \\
\nu_8(a) & 0 & 1 & 1 & 0 \\
\end{array}
</math>.


===Modulus 11===
The nonzero values of the characters mod 8 are
There are <math>\varphi(11)=10</math> characters modulo 11. In the table below, <math>\omega=e^{i\pi/5}.</math>
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& 1 & 3 & 5 & 7 \\
\hline
\chi_{8,\;1} & 1 & 1 & 1 & 1 \\
\chi_{8,\;3} & 1 & 1 & -1 & -1 \\
\chi_{8,\;5} & 1 & -1 & -1 & 1 \\
\chi_{8,\;7} & 1 & -1 & 1 & -1 \\
\end{array}
</math>


:{| class="wikitable" style="text-align:right;"
−1 and 5 generate the units mod 16 (<math>\phi(16)=8</math>)
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
:<math>
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
\begin{array}{|||}
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
a & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
\hline
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
\nu_0(a) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
\nu_{16}(a) & 0 & 3 & 1 & 2 & 2 & 1 & 3 & 0 \\
| &nbsp;&nbsp;'''5'''&nbsp;&nbsp;
\end{array}
| &nbsp;&nbsp;'''6'''&nbsp;&nbsp;
</math>.
| &nbsp;&nbsp;'''7'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''8'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''9'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''10'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| ω
| ω<sup>3</sup>
| ω<sup>2</sup>
| ω<sup>4</sup>
| ω<sup>4</sup>
| ω<sup>2</sup>
| ω<sup>3</sup>
| ω
| 1
|-
| <math>\chi_2(n)</math>
| 0
| 1
| ω<sup>2</sup>
| ω
| ω<sup>4</sup>
| ω<sup>3</sup>
| ω<sup>3</sup>
| ω<sup>4</sup>
| ω
| ω<sup>2</sup>
| 1
|-
| <math>\chi_3(n)</math>
| 0
| 1
| ω<sup>3</sup>
| ω<sup>4</sup>
| ω
| ω<sup>2</sup>
| ω<sup>2</sup>
| ω
| ω<sup>4</sup>
| ω<sup>3</sup>
| 1
|-
| <math>\chi_4(n)</math>
| 0
| 1
| ω<sup>4</sup>
| ω<sup>2</sup>
| ω<sup>3</sup>
| ω
| ω
| ω<sup>3</sup>
| ω<sup>2</sup>
| ω<sup>4</sup>
| 1
|-
| <math>\chi_5(n)</math>
| 0
| 1
| &minus;1
| 1
| 1
| 1
| &minus;1
| &minus;1
| &minus;1
| 1
| &minus;1
|-
| <math>\chi_6(n)</math>
| 0
| 1
| &minus;ω
| ω<sup>3</sup>
| ω<sup>2</sup>
| ω<sup>4</sup>
| &minus;ω<sup>4</sup>
| &minus;ω<sup>2</sup>
| &minus;ω<sup>3</sup>
| ω
| &minus;1
|-
| <math>\chi_7(n)</math>
| 0
| 1
| &minus;ω<sup>2</sup>
| ω
| ω<sup>4</sup>
| ω<sup>3</sup>
| &minus;ω<sup>3</sup>
| &minus;ω<sup>4</sup>
| &minus;ω
| ω<sup>2</sup>
| &minus;1
|-
| <math>\chi_8(n)</math>
| 0
| 1
| &minus;ω<sup>3</sup>
| ω<sup>4</sup>
| ω
| ω<sup>2</sup>
| &minus;ω<sup>2</sup>
| &minus;ω
| &minus;ω<sup>4</sup>
| ω<sup>3</sup>
| &minus;1
|-
| <math>\chi_9(n)</math>
| 0
| 1
| &minus;ω<sup>4</sup>
| ω<sup>2</sup>
| ω<sup>3</sup>
| ω
| &minus;ω
| &minus;ω<sup>3</sup>
| &minus;ω<sup>2</sup>
| ω<sup>4</sup>
| &minus;1
|}


Note that χ is wholly determined by χ(2) since 2 generates the group of units modulo 11.
The nonzero values of the characters mod 16 are


===Modulus 12===
:<math>
There are <math>\varphi(12)=4</math> characters modulo 12.
\begin{array}{|||}
& 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline
\chi_{16,\;1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{16,\;3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\chi_{16,\;5} & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\chi_{16,\;7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\chi_{16,\;9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\chi_{16,\;11} & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\chi_{16,\;13} & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\chi_{16,\;15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\


:{| class="wikitable" style="text-align:right;"
\end{array}
| χ&nbsp;\&nbsp;''n''&nbsp;&nbsp;
</math>.
| &nbsp;&nbsp;'''0'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''1'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''2'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''3'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''4'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''5'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''6'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''7'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''8'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''9'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''10'''&nbsp;&nbsp;
| &nbsp;&nbsp;'''11'''&nbsp;&nbsp;
|-
| <math>\chi_0(n)</math>
| 0
| 1
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 1
|-
| <math>\chi_1(n)</math>
| 0
| 1
| 0
| 0
| 0
| 1
| 0
| &minus;1
| 0
| 0
| 0
| &minus;1
|-
| <math>\chi_2(n)</math>
| 0
| 1
| 0
| 0
| 0
| &minus;1
| 0
| 1
| 0
| 0
| 0
| &minus;1
|-
| <math>\chi_3(n)</math>
| 0
| 1
| 0
| 0
| 0
| &minus;1
| 0
| &minus;1
| 0
| 0
| 0
| 1
|}


Note that χ is wholly determined by χ(5) and χ(7) since 5 and 7 generate the group of units modulo 12.
=== Products of prime powers ===


==Examples==
Let <math>m=p_1^{k_1}p_2^{k_2}...=q_1q_2..., \;p_1<p_2<\;...</math> be the factorization of <math>m</math> into powers of primes. It is known that<ref>See [[Multiplicative group of integers modulo n#General composite numbers|group of units]] for details</ref>
:<math>(\mathbb{Z}/m\mathbb{Z})^\times \cong(\mathbb{Z}/q_1\mathbb{Z})^\times \times(\mathbb{Z}/q_2\mathbb{Z})^\times \times...</math>


If ''p'' is an odd [[prime number]], then the function
For <math>(t,m)=1</math> define<ref>See [https://lmfdb.org/knowledge/show/character.dirichlet.conrey Conrey labeling] for details</ref>
:<math> \chi_{m,\;t}=\chi_{q_1,\;t}\chi_{q_2,\;t}...</math>
Then for <math>(rs,m)=1</math> and all <math>a</math> and <math>b</math>
:<math>\chi_{m,\;r}(a)\chi_{m,\;r}(b)=\chi_{m,\;r}(ab),\;</math> showing that <math>\chi_{m,\;r}</math> is a character and
:<math>\chi_{m,\;r}(a)\chi_{m,\;s}(a)=\chi_{m,\;rs}(a),\;</math> showing an isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times.</math>
==== Examples '''''m''''' = 15, 24, 40 ====


:<math>\chi(n) = \left(\frac{n}{p}\right),\ </math> where <math>\left(\frac{n}{p}\right)</math> is the [[Legendre symbol]], is a primitive Dirichlet character modulo ''p''.<ref name=MV295>{{harvnb|Montgomery|Vaughan|2007|p=295}}</ref>
<math>(\mathbb{Z}/15\mathbb{Z})^\times\cong(\mathbb{Z}/3\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math>


More generally, if ''m'' is a positive odd number, the function
The factorization of the characters mod 15 is
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& \chi_{5,\;1} & \chi_{5,\;2} & \chi_{5,\;3} & \chi_{5,\;4} \\
\hline
\chi_{3,\;1} & \chi_{15,\;1} & \chi_{15,\;7} & \chi_{15,\;13} & \chi_{15,\;4} \\
\chi_{3,\;2} & \chi_{15,\;11} & \chi_{15,\;2} & \chi_{15,\;8} & \chi_{15,\;14} \\
\end{array} </math>
The nonzero values of the characters mod 15 are


:<math>\chi(n) = \left(\frac{n}{m}\right),\ </math> where <math>\left(\frac{n}{m}\right)</math> is the [[Jacobi symbol]], is a Dirichlet character modulo ''m''.<ref name=MV295/>
:<math>
\begin{array}{|||}
& 1 & 2 & 4 & 7 & 8 & 11 & 13 & 14 \\
\hline
\chi_{15,\;1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{15,\;2} & 1 & -i & -1 & i & i & -1 & -i & 1 \\
\chi_{15,\;4} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
\chi_{15,\;7} & 1 & i & -1 & i & -i & 1 & -i & -1 \\
\chi_{15,\;8} & 1 & i & -1 & -i & -i & -1 & i & 1 \\
\chi_{15,\;11} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\
\chi_{15,\;13} & 1 & -i & -1 & -i & i & 1 & i & -1 \\
\chi_{15,\;14} & 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\


These are examples of real characters. In general, all real characters arise from the [[Kronecker symbol]].
\end{array}
</math>.


==Primitive characters and conductor==
<math>(\mathbb{Z}/24\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/3\mathbb{Z})^\times.</math>
Residues mod ''N'' give rise to residues mod ''M'', for any factor ''M'' of ''N'', by discarding some information. The effect on Dirichlet characters goes in the opposite direction: if χ is a character mod ''M'', it ''induces'' a character χ* mod ''N'' for any multiple ''N'' of ''M''. A character is '''primitive''' if it is not induced by any character of smaller modulus.<ref name="MV123"/>
The factorization of the characters mod 24 is
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& \chi_{8,\;1} & \chi_{8,\;3} & \chi_{8,\;5} & \chi_{8,\;7} \\
\hline
\chi_{3,\;1} & \chi_{24,\;1} & \chi_{24,\;19} & \chi_{24,\;13} & \chi_{24,\;7} \\
\chi_{3,\;2} & \chi_{24,\;17} & \chi_{24,\;11} & \chi_{24,\;5} & \chi_{24,\;23} \\
\end{array} </math>


If χ is a character mod ''n'' and ''d'' divides ''n'', then we say that the modulus ''d'' is an ''induced modulus'' for χ if ''a'' coprime to ''n'' and 1 mod ''d'' implies χ(''a'')=1:<ref name=A166>{{harvnb|Apostol|1976|p=166}}</ref> equivalently, χ(''a'') = χ(''b'') whenever ''a'', ''b'' are congruent mod ''d'' and each coprime to ''n''.<ref name=A168>{{harvnb|Apostol|1976|p=168}}</ref> A character is primitive if there is no smaller induced modulus.<ref name=A168/>
The nonzero values of the characters mod 24 are


We can formalize this differently by defining characters χ<sub>1</sub> mod ''N''<sub>1</sub> and χ<sub>2</sub> mod ''N''<sub>2</sub> to be '''co-trained''' if for some modulus ''N'' such that ''N''<sub>1</sub> and ''N''<sub>2</sub> both divide ''N'' we have χ<sub>1</sub>(''n'') = χ<sub>2</sub>(''n'') for all ''n'' coprime to ''N'': that is, there is some character χ* induced by each of χ<sub>1</sub> and χ<sub>2</sub>. In that case, there exists a character modulo the gcd of ''N''<sub>1</sub> and ''N''<sub>2</sub> inducing both χ<sub>1</sub> and χ<sub>2.</sub> This is an equivalence relation on characters. A character with the smallest modulus, in the sense of divisibility, in an equivalence class is primitive and this smallest modulus is the '''conductor''' of the characters in the class.
:<math>
\begin{array}{|||}
& 1 & 5 & 7 & 11 & 13 & 17 & 19 & 23 \\
\hline
\chi_{24,\;1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{24,\;5} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
\chi_{24,\;7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\chi_{24,\;11} & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
\chi_{24,\;13} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
\chi_{24,\;17} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\chi_{24,\;19} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
\chi_{24,\;23} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\


Imprimitivity of characters can lead to missing [[Euler factor]]s in their [[Dirichlet L-function|L-function]]s.
\end{array}
</math>.


==Character orthogonality==
<math>(\mathbb{Z}/40\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math>
The [[orthogonality relation]]s for characters of a finite group transfer to Dirichlet characters.<ref name=A140>{{harvnb|Apostol|1976|p=140}}</ref> If we fix a character χ modulo ''n'' then the sum
The factorization of the characters mod 40 is
:<math>
\begin{array}{|c|c|c|c|c|c|c|}
& \chi_{8,\;1} & \chi_{8,\;3} & \chi_{8,\;5} & \chi_{8,\;7} \\
\hline
\chi_{5,\;1} & \chi_{40,\;1} & \chi_{40,\;11} & \chi_{40,\;21} & \chi_{40,\;31} \\
\chi_{5,\;2} & \chi_{40,\;17} & \chi_{40,\;27} & \chi_{40,\;37} & \chi_{40,\;7} \\
\chi_{5,\;3} & \chi_{40,\;33} & \chi_{40,\;3} & \chi_{40,\;13} & \chi_{40,\;23} \\
\chi_{5,\;4} & \chi_{40,\;9} & \chi_{40,\;19} & \chi_{40,\;29} & \chi_{40,\;39} \\
\end{array} </math>


:<math>\sum_{a \bmod n} \chi(a) = 0 \ </math>
The nonzero values of the characters mod 40 are


unless χ is principal, in which case the sum is φ(''n''). Similarly, if we fix a residue class ''a'' modulo ''n'' and sum over all characters we have
:<math>
\begin{array}{|||}
& 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 & 21 & 23 & 27 & 29 & 31 & 33 & 37 & 39 \\
\hline
\chi_{40,\;1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{40,\;3} & 1 & i & i & -1 & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 \\
\chi_{40,\;7} & 1 & i & -i & -1 & -1 & -i & i & 1 & 1 & i & -i & -1 & -1 & i & i & 1 \\
\chi_{40,\;9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 & 1 \\
\chi_{40,\;11} & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 \\
\chi_{40,\;13} & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 & -1 & i & i & -1 \\
\chi_{40,\;17} & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 \\
\chi_{40,\;19} & 1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 \\
\chi_{40,\;21} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 \\
\chi_{40,\;23} & 1 & -i & i & -1 & -1 & i & -i & 1 & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\chi_{40,\;27} & 1 & -i & -i & -1 & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 \\
\chi_{40,\;29} & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\
\chi_{40,\;31} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
\chi_{40,\;33} & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 \\
\chi_{40,\;37} & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 & 1 & -i & -i & -1 \\
\chi_{40,\;39} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
\end{array}
</math>.


:<math> \sum_{\chi} \chi(a) = 0 \ </math>
=== Summary ===
Let <math>m=p_1^{k_1}p_2^{k_2}...\;=q_1q_2... ,\;\;p_1<p_2<...</math> be the factorization of <math>m</math> and assume <math>(rs,m)=1.</math>


unless <math> a \equiv 1 \pmod n </math> in which case the sum is φ(''n''). We deduce that any periodic function with period ''n'' supported on the residue classes prime to ''n'' is a linear combination of Dirichlet characters.<ref>{{harvnb|Davenport|1967|pp=31–32}}</ref> We also have the a character sum relation given in Chapter 4 of Davenport given by
There are <math>\phi(m)</math> Dirichlet characters mod <math>m.</math> They are denoted by <math>\chi_{m,\;r},</math> where <math>\chi_{m,\;r}=\chi_{m,\;s}</math> is equivalent to <math>r\equiv s\pmod{m}.</math>
:<math>\frac{1}{\phi(q)} \sum_{\chi} \bar{\chi}(a) \chi(n) = \begin{cases} 1, & \text{ if } n \equiv a \pmod{q} \\ 0, & \text{ otherwise, }\end{cases}</math>
The identity <math>\chi_{m,\;r}(a)\chi_{m,\;s}(a)=\chi_{m,\;rs}(a)\;</math> is an isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times.</math><ref>This is true for all finite abelian groups: <math>A\cong\hat{A}</math>; See Ireland & Rosen pp. 253-254</ref>
where the sum is taken over all Dirichlet characters modulo some fixed q, ''a'' and ''n'' are fixed with <math>(a, q) = 1</math>, and <math>\phi(q)</math> denotes Euler's [[totient function]].


== Equivalent definitions ==
Each character mod <math>m</math> has a unique factorization as the product of characters mod the prime powers dividing <math>m</math>:
There are several ways of defining Dirichlet characters, based on other properties that these functions satisfy.
:<math>\;\chi_{m,\;r}=\chi_{q_1,\;r}\chi_{q_2,\;r}...</math>


=== Sárközy's condition ===
If <math>m=m_1m_2, \;\;(m_1,m_2)=1</math> the product <math>\chi_{m_1,\;r}\chi_{m_2,\;s}</math> is a character <math>\chi_{m,\;t}</math> where <math>t</math> is given by <math>t\equiv r\pmod{m_1}</math> and <math>t\equiv s\pmod{m_2}.</math>
A Dirichlet character is a completely multiplicative function <math>f: \mathbb{N} \rightarrow \mathbb{C}</math> that satisfies a [[linear recurrence relation]]: that is, if


:<math>a_1 f(n+b_1) + \cdots + a_kf(n+b_k) = 0</math>
Also,<ref>because the formulas for <math>\chi</math> mod prime powers are symmetric in <math>r</math> and <math>s</math> and the formula for products preserves this symmetry. See Davenport, p. 29.</ref><ref>This is the same thing as saying that the n-th column and the n-th row in the tables of nonzero values are the same.</ref>
<math> \chi_{m,\;r}(s)=\chi_{m,\;s}(r)</math>


for all positive integer <math>n</math>, where <math>a_1,\ldots,a_k</math> are not all zero and <math>b_1,\ldots,b_k</math> are distinct then <math>f</math> is a Dirichlet character.<ref>{{Cite journal|last=Sarkozy|first=Andras|title=On multiplicative arithmetic functions satisfying a linear recursion|journal=Studia Sci. Math. Hung.|volume=13|issue=1–2|pages=79–104}}</ref>
== Orthogonality ==


=== Chudakov's condition ===
The two orthogonality relations are
A Dirichlet character is a completely multiplicative function <math>f: \mathbb{N} \rightarrow \mathbb{C}</math> satisfying the following three properties: a) <math>f</math> takes only finitely many values; b) <math>f</math> vanishes at only finitely many primes; c) there is an <math>\alpha \in \mathbb{C}</math> for which the remainder
:<math>\sum_{a\pmod{m}} \chi(a)=
\begin{cases}
\phi(m)&\text{ if }\;\chi=\chi_0\\
0&\text{ if }\;\chi\ne\chi_0
\end{cases}
</math> &nbsp; &nbsp; and &nbsp; &nbsp; <math>\sum_{\chi\in\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}}\chi(a)=
\begin{cases}
\phi(m)&\text{ if }\;a\equiv 1\pmod{m}\\
0&\text{ if }\;a\not\equiv 1\pmod{m},
\end{cases}
</math>
where the first sum has one summand per residue class.<ref>See [[#Relation to group characters]] above.</ref>


:<math>\left| \sum_{n \leq x} f(n) - \alpha x \right| </math>
The relations can be written in the symmetric form
:<math>\sum_{\begin{align}&a \pmod{m} \\&(a,m)=1\end{align}} \chi_{m,\;r}(a)=
\begin{cases}
\phi(m)&\text{ if }\;r\equiv 1\\
0&\text{ if }\;r\not\equiv 1
\end{cases}
</math> &nbsp; &nbsp; and &nbsp; &nbsp; <math>\sum_{\begin{align}&r \pmod{m} \\&(r,m)=1\end{align}} \chi_{m,\;r}(a)=
\begin{cases}
\phi(m)&\text{ if }\;a\equiv 1\\
0&\text{ if }\;a\not\equiv 1.
\end{cases}
</math>


is uniformly bounded, as <math>x \rightarrow \infty</math>. This equivalent definition of Dirichlet characters was conjectured by Chudakov<ref>{{Cite journal|last=Chudakov|first=N.G.|title=Theory of the characters of number semigroups|journal=J. Indian Math. Soc.|volume=20|pages=11–15}}</ref> in 1956, and proved in 2017 by Klurman and Mangerel.<ref>{{Cite journal|last1=Klurman|first1=Oleksiy|last2=Mangerel|first2=Alexander P.|title=Rigidity Theorems for Multiplicative Functions|journal=Math. Ann.|volume=372|issue=1|pages=651–697|doi=10.1007/s00208-018-1724-6|bibcode=2017arXiv170707817K|year=2017|arxiv=1707.07817|s2cid=119597384}}</ref>
The identity <math>\chi_{m,\;r}(s)=\chi_{m,\;s}(r)</math> for <math>(rs,m)=1</math> shows that the relations are equivalent to each other.


== History ==
The first relation is easy to prove: If <math>\chi=\chi_0</math> there are <math>\phi(m)</math> non-zero summands each equal to 1. Otherwise<ref>by the definition of <math>\chi_0</math></ref> there is some <math>a^*,\; (a^*,m)=1,\;\chi(a^*)\ne1.</math> &nbsp;Then
Dirichlet characters and their ''L''-series were introduced by [[Peter Gustav Lejeune Dirichlet]], in 1831, in order to prove [[Dirichlet's theorem on arithmetic progressions]]. He only studied the ''L''-series for real ''s'' and especially as ''s'' tends to 1. The extension of these functions to complex ''s'' in the whole complex plane was obtained by [[Bernhard Riemann]] in 1859.
:<math>\chi(a^*)\sum_{a \pmod{m}} \chi(a)=\sum_{a \pmod{m}}\chi(a^*) \chi(a)=\sum_{a \pmod{m}} \chi(a^*a)=\sum_{a \pmod{m}} \chi(a),
</math><ref name="permute">because multiplying every element in a group by a constant element merely permutes the elements. See [[Group (mathematics)]]</ref> &nbsp; implying
:<math>(\chi(a^*)-1)\sum_{a \pmod{m}} \chi(a)=0.</math>
The first factor is not zero, therefore the second one is. Since the relations are equivalent, the second one is also proved. QED


==See also==
The second relation can be proven directly in the same way, but requires a lemma<ref>Davenport p. 30 (paraphrase) To prove [the second relation] one has to use ideas that we have used in the construction (as in Landau pp. 109-114), or appeal to the basis theorem for abelian groups (as in Ireland & Rosen pp. 253-254)</ref>
:Given <math>a \not\equiv 1\pmod{m},\;(a,m)=1,</math> there is a <math> \chi^*,\; \chi^*(a)\ne1.</math>

The second relation has an important corollary: if <math>(a,m)=1,</math> define the function
:<math>f_a(n)=\frac{1}{\phi(m)} \sum_{\chi} \bar{\chi}(a) \chi(n). </math> &nbsp; Then
:<math>f_a(n)
= \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}) \chi(n)
= \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}n)
= \begin{cases} 1, & n \equiv a \pmod{m} \\ 0, & n\not\equiv a\pmod{m},\end{cases}</math>
That is <math>f_a=\mathbb{1}_{[a]}</math> the [[indicator function]] of the residue class <math>[a]=\{ x:\;x\equiv a \pmod{m}\}</math>. It is basic in the proof of Dirichlet's theorem.<ref>Davenport chs. 1, 4; Landau p. 114</ref><ref>Note that if <math>g:(\mathbb{Z}/m\mathbb{Z})^\times\rightarrow\mathbb{C} </math> is any function
<math>g(n)=\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} g(a)f_a(n)</math>; see [[Fourier transform on finite groups#Fourier transform for finite abelian groups]]</ref>

== Classification of characters ==

=== Conductor; Primitive and induced characters ===

Any character mod a prime power is also a character mod every larger power. For example, mod 16<ref>This section follows Davenport pp. 35-36,</ref>

:<math>
\begin{array}{|||}
& 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline
\chi_{16,\;3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\

\chi_{16,\;9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\

\chi_{16,\;15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\

\end{array}
</math>

<math>\chi_{16,\;3}</math> has period 16, but <math>\chi_{16,\;9}</math> has period 8 and <math>\chi_{16,\;15}</math> has period 4: &nbsp; <math>\chi_{16,\;9}=\chi_{8,\;5}</math> and &nbsp;<math>\chi_{16,\;15}=\chi_{8,\;7}=\chi_{4,\;3}.</math>
The smallest prime power for which <math>\chi</math> is periodic is the '''conductor''' of <math>\chi</math>. The conductor of <math>\chi_{16,\;3}</math> is 16, the conductor of <math>\chi_{16,\;9}</math> is 8 and that of <math>\chi_{16,\;15}</math> and <math>\chi_{8,\;7}</math> is 4. If the modulus and conductor are equal the character is '''primitive''', otherwise '''imprimitive'''. An imprimitive character is '''induced''' by the character for the smallest modulus: <math>\chi_{16,\;9}</math> is induced from <math>\chi_{8,\;5}</math> and <math>\chi_{16,\;15}</math> and <math>\chi_{8,\;7}</math> are induced from <math>\chi_{4,\;3}</math>.

A related phenomenon can happen with a character mod the product of primes; its ''nonzero values'' may be periodic with a smaller period.

For example, mod 15,
:<math>
\begin{array}{|||}
& 1 & 2 &3 & 4 &5&6 & 7 & 8 &9&10 & 11&12 & 13 & 14 &15 \\
\hline

\chi_{15,\;8} & 1 & i &0 & -1 &0&0 & -i & -i &0&0 & -1 &0& i & 1 &0 \\
\chi_{15,\;11} & 1 & -1 &0 & 1 &0&0 & 1 & -1 &0&0 & -1 &0& 1 & -1 &0\\
\chi_{15,\;13} & 1 & -i &0 & -1 &0&0 & -i & i &0&0 & 1 &0 & i & -1 &0\\

\end{array}
</math>.

The nonzero values of <math>\chi_{15,\;8}</math> have period 15, but those of <math>\chi_{15,\;11}</math> have period 5 and those of <math>\chi_{15,\;13}</math> have period 3. This is easier to see by juxtaposing them with characters mod 3 and 5:

:<math>
\begin{array}{|||}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 &15\\
\hline
\chi_{15,\;11} & 1 & -1 & 0 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 1 & -1 &0\\
\chi_{3,\;2} & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 &0\\
\hline
\chi_{15,\;13} & 1 & -i & 0 & -1 & 0 & 0 & -i & i & 0 & 0 & 1 & 0 & i & -1 &0\\
\chi_{5,\;3} & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 &0\\
\end{array}
</math>.

If a character mod <math>m=qr,\;\; (q,r)=1, \;\;q>1,\;\; r>1</math> is defined as
:<math> \chi_{m,\;\_}(a)=
\begin{cases}
0&\text{ if }\gcd(a,m)>1\\
\chi_{q,\;\_}(a)&\text{ if }\gcd(a,m)=1
\end{cases}
</math>, &nbsp; or equivalently as <math> \chi_{m,\;\_}= \chi_{q,\;\_} \chi_{r,\;1},</math>
its nonzero values are determined by the character mod <math>q</math> and have period <math>q</math>.

The smallest period of the nonzero values is the '''conductor''' of the character. For example the conductor of <math>\chi_{15,\;8}</math> is 15, the conductor of <math>\chi_{15,\;11}</math> is 3, and that of <math>\chi_{15,\;13}</math> is 5.

As in the prime-power case, if the conductor equals the modulus the character is '''primitive''', otherwise '''imprimitive'''. If imprimitive it is '''induced''' from the character with the smaller modulus. For example, <math>\chi_{15,\;11}</math> is induced from <math>\chi_{3,\;2}</math> and <math>\chi_{15,\;13}</math> is induced from <math>\chi_{5,\;3}</math>

The principal character is not primitive.<ref>Davenport classifies it as neither primitive nor imprimitive; the LMFDB induces it from <math>\chi_{1,\;1}.</math></ref>

The character <math>\chi_{m,\;r}=\chi_{q_1,\;r}\chi_{q_2,\;r}...</math> is primitive if and only if each of the factors is primitive.<ref name="twop">Note that if <math>m</math> is two times an odd number, <math>m=2r</math>, all characters mod <math> m </math> are imprimitive because <math>\chi_{m,\;\_}=\chi_{r,\;\_}\chi_{2,\;1}</math></ref>

Primitive characters often simplify (or make possible) formulas in the theories of [[Dirichlet L-function|L-functions]]<ref>For example the functional equation of <math>L(s,\chi)</math> is only valid for primitive <math>\chi</math>. See Davenport, p. 85</ref> and [[modular form]]s.

=== Parity ===

<math>\chi(a)</math> is '''even''' if <math>\chi(-1)=1</math> and is '''odd''' if <math>\chi(-1)=-1.</math>

This distinction appears in the [[Dirichlet L-function#Functional equation|functional equation]] of the [[Dirichlet L-function]].

=== Order ===

The '''order''' of a character is its [[Order (group theory)|order as an element of the group]] <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}</math>, i.e. the smallest positive integer <math>n</math> such that <math>\chi^n= \chi_0.</math> Because of the isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times</math> the order of <math>\chi_{m,\;r}</math> is the same as the order of <math>r</math> in <math>(\mathbb{Z}/m\mathbb{Z})^\times. </math> The principal character has order 1; other [[#Real characters|real characters]] have order 2, and imaginary characters have order 3 or greater. By [[Lagrange's theorem (group theory)|Lagrange's theorem]] the order of a character divides the order of <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}</math> which is <math>\phi(m)</math>

=== Real characters ===

<math>\chi(a)</math> is '''real''' or '''quadratic''' if all of its values are real (they must be <math>0,\;\pm1</math>); otherwise it is '''complex''' or '''imaginary.'''

<math>\chi</math> is real if and only if <math>\chi^2=\chi_0</math>; <math>\chi_{m,\;k} </math> is real if and only if <math>k^2\equiv1\pmod{m}</math>; in particular, <math>\chi_{m,\;-1} </math> is real and non-principal.<ref>In fact, for prime modulus <math>p\;\;\chi_{p,\;-1}</math> is the [[Legendre symbol]]: <math>\chi_{p,\;-1}(a)=\left(\frac{a}{p}\right).\;</math> Sketch of proof: <math>\nu_p(-1)=\frac{p-1}{2},\;\;\omega^{\nu_p(-1)}=-1, \;\;\nu_p(a)</math> is even (odd) if a is a quadratic residue (nonresidue)</ref>

Dirichlet's original proof that <math>L(1,\chi)\ne0</math> (which was only valid for prime moduli) took two different forms depending on whether <math>\chi</math> was real or not. His later proof, valid for all moduli, was based on his [[class number formula]].<ref>Davenport, chs. 1, 4.</ref><ref>Ireland and Rosen's proof, valid for all moduli, also has these two cases. pp. 259 ff</ref>

Real characters are [[Kronecker symbol]]s;<ref>Davenport p. 40</ref> for example, the principal character can be written<ref>The notation <math>\chi_{m,\;1}=\left(\frac{m^2}{\bullet}\right)</math> is a shorter way of writing <math>\chi_{m,\;1}(a)=\left(\frac{m^2}{a}\right)</math></ref>
<math>\chi_{m,\;1}=\left(\frac{m^2}{\bullet}\right)</math>.

The real characters in the examples are:

==== Principal ====
If <math>m=p_1^{k_1}p_2^{k_2}...,\;p_1<p_2<\;...</math> the principal character is<ref>The product of primes ensures it is zero if <math>\gcd(m,\bullet) >1</math>; the squares ensure its only nonzero value is 1.</ref> <math>\chi_{m,\;1}=\left(\frac{p_1^2p_2^2...}{\bullet}\right).</math>

<math>\chi_{16,\;1}=\chi_{8,\;1}=\chi_{4,\;1}=\chi_{2,\;1}=\left(\frac{4}{\bullet}\right)</math> &nbsp;
<math>\chi_{9,\;1}=\chi_{3,\;1}=\left(\frac{9}{\bullet}\right)</math> &nbsp;
<math>\chi_{5,\;1}=\left(\frac{25}{\bullet}\right)</math> &nbsp;
<math>\chi_{7,\;1}=\left(\frac{49}{\bullet}\right)</math> &nbsp;
<math>\chi_{15,\;1}=\left(\frac{225}{\bullet}\right)</math> &nbsp;
<math>\chi_{24,\;1}=\left(\frac{36}{\bullet}\right)</math> &nbsp;
<math>\chi_{40,\;1}=\left(\frac{100}{\bullet}\right)</math> &nbsp;

==== Primitive ====

If the modulus is the absolute value of a [[fundamental discriminant]] there is a real primitive character (there are two if the modulus is a multiple of 8); otherwise if there are any primitive characters<ref name="twop" /> they are imaginary.<ref>Davenport pp. 38-40</ref>

<math>\chi_{3,\;2}=\left(\frac{-3}{\bullet}\right)</math> &nbsp;
<math>\chi_{4,\;3}=\left(\frac{-4}{\bullet}\right)</math> &nbsp;
<math>\chi_{5,\;4}=\left(\frac{5}{\bullet}\right)</math> &nbsp;
<math>\chi_{7,\;6}=\left(\frac{-7}{\bullet}\right)</math> &nbsp;
<math>\chi_{8,\;3}=\left(\frac{-8}{\bullet}\right)</math> &nbsp;
<math>\chi_{8,\;5}=\left(\frac{8}{\bullet}\right)</math> &nbsp;
<math>\chi_{15,\;14}=\left(\frac{-15}{\bullet}\right)</math> &nbsp;
<math>\chi_{24,\;5}=\left(\frac{-24}{\bullet}\right)</math> &nbsp;
<math>\chi_{24,\;11}=\left(\frac{24}{\bullet}\right)</math> &nbsp;
<math>\chi_{40,\;19}=\left(\frac{-40}{\bullet}\right)</math> &nbsp;
<math>\chi_{40,\;29}=\left(\frac{40}{\bullet}\right)</math>

==== Imprimitive ====

<math>\chi_{8,\;7}=\chi_{4,\;3}=\left(\frac{-4}{\bullet}\right)</math> &nbsp;
<math>\chi_{9,\;8}=\chi_{3,\;2}=\left(\frac{-3}{\bullet}\right)</math> &nbsp;
<math>\chi_{15,\;4}=\chi_{5,\;4}\chi_{3,\;1}=\left(\frac{45}{\bullet}\right)</math> &nbsp;
<math>\chi_{15,\;11}=\chi_{3,\;2}\chi_{5,\;1}=\left(\frac{-75}{\bullet}\right)</math> &nbsp;
<math>\chi_{16,\;7}=\chi_{8,\;3}=\left(\frac{-8}{\bullet}\right)</math> &nbsp;
<math>\chi_{16,\;9}=\chi_{8,\;5}=\left(\frac{8}{\bullet}\right)</math> &nbsp;
<math>\chi_{16,\;15}=\chi_{4,\;3}=\left(\frac{-4}{\bullet}\right)</math> &nbsp;

<math>\chi_{24,\;7}=\chi_{8,\;7}\chi_{3,\;1}=\chi_{4,\;3}\chi_{3,\;1}=\left(\frac{-36}{\bullet}\right)</math> &nbsp;
<math>\chi_{24,\;13}=\chi_{8,\;5}\chi_{3,\;1}=\left(\frac{72}{\bullet}\right)</math> &nbsp;
<math>\chi_{24,\;17}=\chi_{3,\;2}\chi_{8,\;1}=\left(\frac{-12}{\bullet}\right)</math> &nbsp;
<math>\chi_{24,\;19}=\chi_{8,\;3}\chi_{3,\;1}=\left(\frac{-72}{\bullet}\right)</math> &nbsp;
<math>\chi_{24,\;23}=\chi_{8,\;7}\chi_{3,\;2}=\chi_{4,\;3}\chi_{3,\;2}=\left(\frac{12}{\bullet}\right)</math> &nbsp;

<math>\chi_{40,\;9}=\chi_{5,\;4}\chi_{8,\;1}=\left(\frac{20}{\bullet}\right)</math> &nbsp;
<math>\chi_{40,\;11}=\chi_{8,\;3}\chi_{5,\;1}=\left(\frac{-200}{\bullet}\right)</math> &nbsp;
<math>\chi_{40,\;21}=\chi_{8,\;5}\chi_{5,\;1}=\left(\frac{200}{\bullet}\right)</math> &nbsp;
<math>\chi_{40,\;31}=\chi_{8,\;7}\chi_{5,\;1}=\chi_{4,\;3}\chi_{5,\;1}=\left(\frac{-100}{\bullet}\right)</math> &nbsp;
<math>\chi_{40,\;39}=\chi_{8,\;7}\chi_{5,\;4}=\chi_{4,\;3}\chi_{5,\;4}=\left(\frac{-20}{\bullet}\right)</math> &nbsp;

== Applications ==

=== L-functions ===
{{Main|Dirichlet L-function}}

The Dirichlet L-series for a character <math>\chi</math> is

:<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}.</math>

This series only converges for <math>\mathfrak{R}s >1</math>; it can be analytically continued to a meromorphic function

Dirichlet introduced the <math>L</math>-function along with the characters in his 1837 paper.

=== Modular forms and functions ===
{{Main|Modular form}}
Dirichlet characters appear several places in the theory of modular forms and functions. A typical example is<ref>Koblittz, prop. 17b p. 127</ref>

Let <math>\chi\in\widehat{(\mathbb{Z}/M\mathbb{Z})^\times}</math> and let <math>\chi_1\in\widehat{(\mathbb{Z}/N\mathbb{Z})^\times}</math> be primitive.

If
:<math>f(z)=\sum a_nq^n\in M_k(M,\chi)</math><ref><math>f(z)\in M_k(M,\chi)</math> means

1) <math>f(\frac{az+b}{cz+d})(cz+d)^{-k}=f(z) </math> where <math>ad-bc=1</math> and

<math> a\equiv d\equiv 1,\;\;c\equiv 0\pmod{M}.</math>
and 2) <math>f(\frac{az+b}{cz+d})(cz+d)^{-k}=\chi(d)f(z) </math> where <math>ad-bc=1</math> and <math>c\equiv 0\pmod{M}.
</math> See Koblitz Ch. III.</ref>
define
:<math>f_{\chi_1}(z)=\sum\chi_1(n)a_nz^n</math>,<ref>the '''twist''' of <math>f</math> by <math>\chi_1</math></ref> &nbsp;
Then
:<math>f_{\chi_1}(z)\in M_k(MN^2,\chi\chi_1^2)</math>. If <math>f</math> is a [[cusp form]] so is <math>f_{\chi_1}.</math>
See [[Theta function#Theta series of a Dirichlet character|theta series of a Dirichlet character]] for another example.

=== Gauss sum ===
{{Main|Gauss sum}}

The Gauss sum of a Dirichlet character modulo {{mvar|N}} is
:<math>G(\chi)=\sum_{a=1}^N\chi(a)e^\frac{2\pi ia}{N}.</math>
It appears in the [[Dirichlet L-function#Functional equation|functional equation]] of the [[Dirichlet L-function]].

=== Jacobi sum ===
{{Main|Jacobi sum}}

If <math> \chi</math> and <math>\psi</math> are Dirichlet characters mod a prime <math>p</math> their Jacobi sum is

: <math> J(\chi,\psi) = \sum_{a=2}^{p-1} \chi(a) \psi(1 - a). </math>
Jacobi sums can be factored into products of Gauss sums.

=== Kloosterman sum ===
{{Main|Kloosterman sum}}

If <math>\chi</math> is a Dirichlet character mod <math>q</math> and <math>\zeta = e^\frac{2\pi i}{q}</math> the Kloosterman sum <math> K(a,b,\chi)</math> is defined as<ref>[https://www.lmfdb.org/knowledge/show/character.dirichlet.kloosterman_sum LMFDB definition of Kloosterman sum]</ref>

:<math>K(a,b,\chi)=\sum_{r\in (\mathbb{Z}/q\mathbb{Z})^\times}\chi(r)\zeta^{ar+\frac{b}{r}}.</math>

If <math>b=0</math> it is a Gauss sum.

== Sufficient conditions ==
It is not necessary to establish the defining properties 1) – 3) to show that a function is a Dirichlet character.
=== From Davenport's book ===

If <math>\Chi:\mathbb{Z}\rightarrow\mathbb{C}</math> such that
:1) &nbsp; <math>\Chi(ab) = \Chi(a)\Chi(b),</math>
:2) &nbsp; <math>\Chi(a + m) = \Chi(a)</math>,
:3) &nbsp; If <math>\gcd(a,m)>1</math> then <math>\Chi(a)=0</math>, but
:4) &nbsp; <math>\Chi(a)</math> is not always 0,
then <math>\Chi(a)</math> is one of the <math>\phi(m)</math> characters mod <math>m</math><ref>Davenport p. 30</ref>

=== Sárközy's Condition ===
A Dirichlet character is a completely multiplicative function <math>f: \mathbb{N} \rightarrow \mathbb{C}</math> that satisfies a [[linear recurrence relation]]: that is, if <math>a_1 f(n+b_1) + \cdots + a_kf(n+b_k) = 0

</math>

for all positive integer <math>n</math>, where <math>a_1,\ldots,a_k</math> are not all zero and <math>b_1,\ldots,b_k</math> are distinct then <math>f</math> is a Dirichlet character.<ref>Sarkozy</ref>

=== Chudakov's Condition ===
A Dirichlet character is a completely multiplicative function <math>f: \mathbb{N} \rightarrow \mathbb{C}</math> satisfying the following three properties: a) <math>f</math> takes only finitely many values; b) <math>f</math> vanishes at only finitely many primes; c) there is an <math>\alpha \in \mathbb{C}</math> for which the remainder

<math>\left|\sum_{n \leq x} f(n)- \alpha x\right| </math>

is uniformly bounded, as <math>x \rightarrow \infty</math>. This equivalent definition of Dirichlet characters was conjectured by Chudakov<ref>Chudakov</ref> in 1956, and proved in 2017 by Klurman and Mangerel.<ref>Klurman</ref>

== See also ==
{{col div|colwidth=30em}}
{{col div|colwidth=30em}}
* [[Character sum]]
* [[Character sum]]
* [[Gauss sum]]
* [[Multiplicative group of integers modulo n|Multiplicative group of integers modulo ''n'']]
* [[Multiplicative group of integers modulo n|Multiplicative group of integers modulo ''n'']]
* [[Primitive root modulo n|Primitive root modulo ''n'']]
* [[Primitive root modulo n|Primitive root modulo ''n'']]
* [[Selberg class]]
* [[Multiplicative character]]
* [[Multiplicative character]]
{{colend}}
{{colend}}


== Notes ==
==References==
{{reflist}}
{{reflist}}
* See chapter 6 of {{Apostol IANT}}

* {{Cite journal |doi=10.2307/2317522 |first=T. M. |last=Apostol |author-link=Tom M. Apostol |title=Some properties of completely multiplicative arithmetical functions |journal=The American Mathematical Monthly |volume=78 |issue=3 |year=1971 |pages=266&ndash;271 |mr=0279053 | zbl=0209.34302 |jstor=2317522 }}
== References ==
* {{cite book | last=Davenport | first=Harold | author-link=Harold Davenport | title=Multiplicative number theory | publisher=Markham | series=Lectures in advanced mathematics | volume=1 | location=Chicago | year=1967 | zbl=0159.06303 }}
*{{Cite journal
|last=Chudakov|first=N.G.
|title=Theory of the characters of number semigroups
|journal=J. Indian Math. Soc.|volume=20|pages=11–15}}
* {{cite book
| last=Davenport | first=Harold | author-link=Harold Davenport
| title=Multiplicative number theory | publisher=Markham | series=Lectures in advanced mathematics | volume=1 | location=Chicago | year=1967 | zbl=0159.06303 }}
*{{citation
| last1 = Ireland | first1 = Kenneth
| last2 = Rosen | first2 = Michael
| title = A Classical Introduction to Modern Number Theory (Second edition)
| publisher = [[Springer Science+Business Media|Springer]]
| location = New York
| date = 1990
| isbn = 0-387-97329-X}}
*{{Cite journal|last1=Klurman|first1=Oleksiy|last2=Mangerel|first2=Alexander P.|title=Rigidity Theorems for Multiplicative Functions|journal=Math. Ann.|volume=372|issue=1|pages=651–697|doi=10.1007/s00208-018-1724-6|bibcode=2017arXiv170707817K|year=2017|arxiv=1707.07817|s2cid=119597384}}
* {{Cite book
* {{Cite book
|first=Neal
|first=Helmut
|last=Koblitz
|last=Hasse
|author-link=Neal Koblitz
|author-link=Helmut Hasse
|title=Vorlesungen über Zahlentheorie
|title=Introduction to Elliptic Curves and Modular Forms
|edition=2nd revised
|edition=2nd revised
|series=Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen
|series=Graduate Texts in Mathematics
|volume=97
|volume=59
|publisher=[[Springer-Verlag]]
|publisher=[[Springer-Verlag]]
|year=1993
|year=1964
|mr=0188128 | zbl=0123.04201
|isbn=0-387-97966-2
}} see chapter 13.
* {{Cite arXiv |first1=R. J. |last1=Mathar |eprint=1008.2547 |class=math.NT |title=Table of Dirichlet L-series and prime zeta modulo functions for small moduli |year=2010 }}
* {{cite book | last1=Montgomery | first1=Hugh L | author1-link=Hugh Montgomery (mathematician) | last2=Vaughan | first2=Robert C. | author2-link=Bob Vaughan | title=Multiplicative number theory. I. Classical theory | series=Cambridge Studies in Advanced Mathematics | volume=97 | publisher=[[Cambridge University Press]] | year=2007 | isbn=978-0-521-84903-6 | zbl=1142.11001 }}
* {{Cite journal
|first1=Robert
|last1=Spira
|title=Calculation of Dirichlet L-Functions
|journal=Mathematics of Computation
|volume=23
|pages=489&ndash;497
|year=1969
|doi=10.1090/S0025-5718-1969-0247742-X
|mr=0247742 | zbl=0182.07001
|issue=107
|doi-access=free
}}
}}
* {{cite book | last1=Fröhlich | first1=A. | author1-link=Albrecht Fröhlich | last2=Taylor | first2= M.J. | author2-link=Martin J. Taylor | title=Algebraic number theory | series=Cambridge studies in advanced mathematics | volume=27 | publisher=[[Cambridge University Press]] | year=1991 | isbn=0-521-36664-X | zbl=0744.11001 }}
*{{citation
| last1 = Landau | first1 = Edmund
| title = Elementary Number Theory
| publisher = Chelsea
| location = New York
| date = 1966}}
*{{Cite journal
|last=Sarkozy|first=Andras
|title=On multiplicative arithmetic functions satisfying a linear recursion
|journal=Studia Sci. Math. Hung.|volume=13|issue=1–2|pages=79–104}}


== External links ==
==External links==
* {{springer|title=Dirichlet character|id=p/d032810}}

* {{cite web|url=http://www.lmfdb.org/Character/Dirichlet/|title=Dirichlet Characters}} in the LMFDB
[https://arxiv.org/abs/0808.1408#:~:text=Dirichlet's%20proof%20of%20infinitely%20many,and%20the%20distribution%20of%20primes. English translation of Dirichlet's 1837 paper on primes in arithmetic progressions]

[https://www.lmfdb.org/ LMFDB] Lists 30,397,486 Dirichlet characters of modulus up to 10,000 and their L-functions


{{Peter Gustav Lejeune Dirichlet}}
{{Peter Gustav Lejeune Dirichlet}}


[[Category:Analytic number theory]]
[[Category:Zeta and L-functions]]
[[Category:Zeta and L-functions]]

[[de:Charakter (Mathematik)#Dirichlet-Charaktere]]

Revision as of 10:21, 29 December 2021

In mathematics, specifically number theory, Dirichlet characters are certain arithmetic functions which arise from completely multiplicative characters on the units of . Dirichlet characters are used to define Dirichlet L-functions, which are meromorphic functions with a variety of interesting analytic properties.

If is a Dirichlet character, one defines its Dirichlet L-series by

where s is a complex number with real part > 1. By analytic continuation, this function can be extended to a meromorphic function on the whole complex plane. Dirichlet L-functions are generalizations of the Riemann zeta-function and appear prominently in the generalized Riemann hypothesis.

Dirichlet characters are named in honour of Peter Gustav Lejeune Dirichlet. They were later generalized by Erich Hecke to Hecke characters (also known as Grössencharacter).

Axiomatic definition

We say that a function from the integers to the complex numbers is a Dirichlet character if it has the following properties:[1]

  1. There exists a positive integer k such that χ(n) = χ(n + k) for all integers n.
  2. If the greatest common divisor gcd(n, k) is larger than 1 then χ(n) = 0; if gcd(n, k) = 1 then χ(n) ≠ 0.
  3. χ(mn) = χ(m)χ(n) for all integers m and n.

From this definition, several other properties can be deduced. By property 3, χ(1) = χ(1 × 1) = χ(1)χ(1). Since gcd(1, k) = 1, property 2 says χ(1) ≠ 0, so

  1. χ(1) = 1.

Properties 3 and 4 show that every Dirichlet character χ is completely multiplicative.

Property 1 says that a character is periodic with period k; we say that is a character to the modulus k. This is equivalent to saying that

  1. If ab (mod k) then χ(a) = χ(b).

If gcd(a, k) = 1, Euler's theorem says that aφ(k) ≡ 1 (mod k) (where φ(k) is the totient function). Therefore, by properties 5 and 4, χ(aφ(k)) = χ(1) = 1, and by 3, χ(aφ(k)) =χ(a)φ(k). So

  1. For all a relatively prime to k, χ(a) is a φ(k)-th complex root of unity, i.e. for some integer 0 ≤ r < φ(k).

A character is called principal (or trivial) if it assumes the value 1 for arguments coprime to its modulus and otherwise is 0.[2] A character is called real if all of its values are real (i.e. χ(n) is 0, 1, or -1 for all n). A non-principal real character is also called quadratic. A character which is not real is called complex.[3]

The sign of the character depends on its value at −1. Specifically, is said to be odd if and even if .

Construction via residue classes

Dirichlet characters may be viewed in terms of the character group of the group of units of the ring Z/kZ, as extended residue class characters.[4]

Residue classes

Given an integer k, one defines the residue class of an integer n as the set of all integers congruent to n modulo k: That is, the residue class is the coset of n in the quotient ring Z/kZ.

The set of units modulo k forms an abelian group of order , where group multiplication is given by and again denotes Euler's phi function. The identity in this group is the residue class and the inverse of is the residue class where , i.e., . For example, for k=6, the set of units is because 0, 2, 3, and 4 are not coprime to 6.

The character group of (Z/k)* consists of the residue class characters. A residue class character θ on (Z/k)* is primitive if there is no proper divisor d of k such that θ factors as a map (Z/k)* → (Z/d)*C*, where the first arrow is the natural "modding d" map.[5]

Dirichlet characters

The definition of a Dirichlet character modulo k ensures that it restricts to a character of the unit group modulo k:[6] a group homomorphism from (Z/kZ)* to the non-zero complex numbers

,

with values that are necessarily roots of unity since the units modulo k form a finite group. In the opposite direction, given a group homomorphism on the unit group modulo k, we can lift to a completely multiplicative function on integers relatively prime to k and then extend this function to all integers by defining it to be 0 on integers having a non-trivial factor in common with k. The resulting function will then be a Dirichlet character.[7]

The principal character modulo k has the properties[7]

if gcd(n, k) = 1 and
if gcd(n, k) > 1.

The associated character of the multiplicative group (Z/kZ)* is the principal character which always takes the value 1.[8]

When k is 1, the principal character modulo k is equal to 1 at all integers. For k greater than 1, the principal character modulo k vanishes at integers having a non-trivial common factor with k and is 1 at other integers.

There are φ(n) Dirichlet characters modulo n.[7]

A few character tables

The tables below help illustrate the nature of a Dirichlet character. They present all of the characters from modulus 1 to modulus 12. The characters χ0 are the principal characters.

Modulus 1

There is character modulo 1:

χ \ n     0  
1

Note that χ is wholly determined by χ(0) since 0 generates the group of units modulo 1.

The Dirichlet L-series for is the Riemann zeta function

.

Modulus 2

There is character modulo 2:

χ \ n     0     1  
0 1

Note that χ is wholly determined by χ(1) since 1 generates the group of units modulo 2.

The Dirichlet L-series for is the Dirichlet lambda function (closely related to the Dirichlet eta function)

Modulus 3

There are characters modulo 3:

χ \ n     0     1     2  
0 1 1
0 1 −1

Note that χ is wholly determined by χ(2) since 2 generates the group of units modulo 3.

Modulus 4

There are characters modulo 4:

χ \ n     0     1     2     3  
0 1 0 1
0 1 0 −1

Note that χ is wholly determined by χ(3) since 3 generates the group of units modulo 4.

The Dirichlet L-series for is the Dirichlet lambda function (closely related to the Dirichlet eta function)

where is the Riemann zeta-function. The L-series for is the Dirichlet beta-function

Modulus 5

There are characters modulo 5. In the table below, i is the imaginary unit.

χ \ n     0     1     2     3     4  
0 1 1 1 1
0 1 i i −1
0 1 −1 −1 1
0 1 i i −1

Note that χ is wholly determined by either χ(2) or χ(3) since 2 generates the group of units modulo 5 and so does 3.

Modulus 6

There are characters modulo 6:

χ \ n     0     1     2     3     4     5  
0 1 0 0 0 1
0 1 0 0 0 −1

Note that χ is wholly determined by χ(5) since 5 generates the group of units modulo 6.

Modulus 7

There are characters modulo 7. In the table below,

χ \ n     0     1     2     3     4     5     6  
0 1 1 1 1 1 1
0 1 ω2 ω −ω −ω2 −1
0 1 −ω ω2 ω2 −ω 1
0 1 1 −1 1 −1 −1
0 1 ω2 −ω −ω ω2 1
0 1 −ω −ω2 ω2 ω −1

Note that χ is wholly determined by χ(3) since 3 generates the group of units modulo 7.

Modulus 8

There are characters modulo 8.

χ \ n     0     1     2     3     4     5     6     7  
0 1 0 1 0 1 0 1
0 1 0 1 0 −1 0 −1
0 1 0 −1 0 1 0 −1
0 1 0 −1 0 −1 0 1

Note that χ is wholly determined by χ(3) and χ(5) since 3 and 5 generate the group of units modulo 8.

Modulus 9

There are characters modulo 9. In the table below,

χ \ n     0     1     2     3     4     5     6     7     8  
0 1 1 0 1 1 0 1 1
0 1 ω 0 ω2 −ω2 0 −ω −1
0 1 ω2 0 −ω −ω 0 ω2 1
0 1 −1 0 1 −1 0 1 −1
0 1 −ω 0 ω2 ω2 0 −ω 1
0 1 −ω2 0 −ω ω 0 ω2 −1

Note that χ is wholly determined by χ(2) since 2 generates the group of units modulo 9.

Modulus 10

There are characters modulo 10. In the table below, i is the imaginary unit.

χ \ n     0     1     2     3     4     5     6     7     8     9  
0 1 0 1 0 0 0 1 0 1
0 1 0 i 0 0 0 i 0 −1
0 1 0 −1 0 0 0 −1 0 1
0 1 0 i 0 0 0 i 0 −1

Note that χ is wholly determined by χ(3) since 3 generates the group of units modulo 10.

Modulus 11

There are characters modulo 11. In the table below,

χ \ n     0     1     2     3     4     5     6     7     8     9     10  
0 1 1 1 1 1 1 1 1 1 1
0 1 ω ω3 ω2 ω4 ω4 ω2 ω3 ω 1
0 1 ω2 ω ω4 ω3 ω3 ω4 ω ω2 1
0 1 ω3 ω4 ω ω2 ω2 ω ω4 ω3 1
0 1 ω4 ω2 ω3 ω ω ω3 ω2 ω4 1
0 1 −1 1 1 1 −1 −1 −1 1 −1
0 1 −ω ω3 ω2 ω4 −ω4 −ω2 −ω3 ω −1
0 1 −ω2 ω ω4 ω3 −ω3 −ω4 −ω ω2 −1
0 1 −ω3 ω4 ω ω2 −ω2 −ω −ω4 ω3 −1
0 1 −ω4 ω2 ω3 ω −ω −ω3 −ω2 ω4 −1

Note that χ is wholly determined by χ(2) since 2 generates the group of units modulo 11.

Modulus 12

There are characters modulo 12.

χ \ n     0     1     2     3     4     5     6     7     8     9     10     11  
0 1 0 0 0 1 0 1 0 0 0 1
0 1 0 0 0 1 0 −1 0 0 0 −1
0 1 0 0 0 −1 0 1 0 0 0 −1
0 1 0 0 0 −1 0 −1 0 0 0 1

Note that χ is wholly determined by χ(5) and χ(7) since 5 and 7 generate the group of units modulo 12.

Examples

If p is an odd prime number, then the function

where is the Legendre symbol, is a primitive Dirichlet character modulo p.[9]

More generally, if m is a positive odd number, the function

where is the Jacobi symbol, is a Dirichlet character modulo m.[9]

These are examples of real characters. In general, all real characters arise from the Kronecker symbol.

Primitive characters and conductor

Residues mod N give rise to residues mod M, for any factor M of N, by discarding some information. The effect on Dirichlet characters goes in the opposite direction: if χ is a character mod M, it induces a character χ* mod N for any multiple N of M. A character is primitive if it is not induced by any character of smaller modulus.[3]

If χ is a character mod n and d divides n, then we say that the modulus d is an induced modulus for χ if a coprime to n and 1 mod d implies χ(a)=1:[10] equivalently, χ(a) = χ(b) whenever a, b are congruent mod d and each coprime to n.[11] A character is primitive if there is no smaller induced modulus.[11]

We can formalize this differently by defining characters χ1 mod N1 and χ2 mod N2 to be co-trained if for some modulus N such that N1 and N2 both divide N we have χ1(n) = χ2(n) for all n coprime to N: that is, there is some character χ* induced by each of χ1 and χ2. In that case, there exists a character modulo the gcd of N1 and N2 inducing both χ1 and χ2. This is an equivalence relation on characters. A character with the smallest modulus, in the sense of divisibility, in an equivalence class is primitive and this smallest modulus is the conductor of the characters in the class.

Imprimitivity of characters can lead to missing Euler factors in their L-functions.

Character orthogonality

The orthogonality relations for characters of a finite group transfer to Dirichlet characters.[12] If we fix a character χ modulo n then the sum

unless χ is principal, in which case the sum is φ(n). Similarly, if we fix a residue class a modulo n and sum over all characters we have

unless in which case the sum is φ(n). We deduce that any periodic function with period n supported on the residue classes prime to n is a linear combination of Dirichlet characters.[13] We also have the a character sum relation given in Chapter 4 of Davenport given by

where the sum is taken over all Dirichlet characters modulo some fixed q, a and n are fixed with , and denotes Euler's totient function.

Equivalent definitions

There are several ways of defining Dirichlet characters, based on other properties that these functions satisfy.

Sárközy's condition

A Dirichlet character is a completely multiplicative function that satisfies a linear recurrence relation: that is, if

for all positive integer , where are not all zero and are distinct then is a Dirichlet character.[14]

Chudakov's condition

A Dirichlet character is a completely multiplicative function satisfying the following three properties: a) takes only finitely many values; b) vanishes at only finitely many primes; c) there is an for which the remainder

is uniformly bounded, as . This equivalent definition of Dirichlet characters was conjectured by Chudakov[15] in 1956, and proved in 2017 by Klurman and Mangerel.[16]

History

Dirichlet characters and their L-series were introduced by Peter Gustav Lejeune Dirichlet, in 1831, in order to prove Dirichlet's theorem on arithmetic progressions. He only studied the L-series for real s and especially as s tends to 1. The extension of these functions to complex s in the whole complex plane was obtained by Bernhard Riemann in 1859.

See also

References

  1. ^ Montgomery & Vaughan 2007, pp. 117–8
  2. ^ Montgomery & Vaughan 2007, p. 115
  3. ^ a b Montgomery & Vaughan 2007, p. 123
  4. ^ Fröhlich & Taylor 1991, p. 218
  5. ^ Fröhlich & Taylor 1991, p. 215
  6. ^ Apostol 1976, p. 139
  7. ^ a b c Apostol 1976, p. 138
  8. ^ Apostol 1976, p. 134
  9. ^ a b Montgomery & Vaughan 2007, p. 295
  10. ^ Apostol 1976, p. 166
  11. ^ a b Apostol 1976, p. 168
  12. ^ Apostol 1976, p. 140
  13. ^ Davenport 1967, pp. 31–32
  14. ^ Sarkozy, Andras. "On multiplicative arithmetic functions satisfying a linear recursion". Studia Sci. Math. Hung. 13 (1–2): 79–104.
  15. ^ Chudakov, N.G. "Theory of the characters of number semigroups". J. Indian Math. Soc. 20: 11–15.
  16. ^ Klurman, Oleksiy; Mangerel, Alexander P. (2017). "Rigidity Theorems for Multiplicative Functions". Math. Ann. 372 (1): 651–697. arXiv:1707.07817. Bibcode:2017arXiv170707817K. doi:10.1007/s00208-018-1724-6. S2CID 119597384.