Jump to content

Draft:Sim4Life: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Declining submission: adv - Submission reads like an advertisement (AFCH)
PLBounds (talk | contribs)
- toned down language to make it sound (hopefully) less promotional
Line 24: Line 24:
| website = {{URL|https://zmt.swiss/sim4life/}}
| website = {{URL|https://zmt.swiss/sim4life/}}
}}
}}
[[File:S4l new head Wikipedia.png|thumb|'''Sim4Life promotional image''']]
'''Sim4Life''' is a simulation platform developed by the Foundation for Research on Information Technologies in Society (IT'IS) with funding from Innosuisse<ref>{{Cite web |date=27 November 2014 |title=Development of a Multiphysics Simulation Platform for Computational BioMed and Life Sciences (Sim4Life) |url=https://www.aramis.admin.ch/Grunddaten/?ProjectID=28397 |access-date=17 March 2024 |website=ARAMIS}}</ref><ref>{{Cite web |date=1 June 2015 |title=R and D project : S4L-CAPITALIS - Extension of the Sim4Life Platform (S4L) for Analysis and Optimization of the Neurovascular and Neurological Devices and Treatments in the Head |url=https://www.aramis.admin.ch/Texte/?ProjectID=34223&Sprache=en-US |access-date=17 March 2024 |website=ARAMIS}}</ref>, formerly known as CTI, the Swiss federal innovation agency. The platform combines classical technical [[Computer-aided design|computer-aided-design]] tools with multi-physics solvers, [[computational human phantom|computational human phantoms]], [[Medical image computing|medical-image-based modeling]], and [[Tissue (biology)|physiological tissue]] models. Sim4Life – marketed by IT'IS partner ZMT Zurich MedTech AG (ZMT) – is used by [[Medical research|medical researchers]] to investigate, for example, [[personalized medicine]] and optimization of treatment modalities,<ref>{{Cite journal |date=7 February 2022 |title=Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis |url=https://www.nature.com/articles/s41591-021-01663-5 |journal=Nature Medicine |volume=28 |pages=260–271 |via=Nature}}</ref><ref>{{Cite journal |date=16 Mar 2022 |title=Experimental and computational evaluation of capacitive hyperthermia |url=https://www.tandfonline.com/doi/full/10.1080/02656736.2022.2048093 |journal=International Journal of Hyperthermia |volume=39 |issue=1 |pages=504–516 |via=Taylor & Francis Online}}</ref> safety aspects of [[magnetic resonance imaging]],<ref>{{Cite journal |date=2021 |title=An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head |url=https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28467 |journal=Magnetic Resonance in Medicine |volume=85 |issue=2 |pages=1114–1122 |doi=10.1002/mrm.28467 |via=Wiley Online Library |last1=De Buck |first1=Matthijs H. S. |last2=Jezzard |first2=Peter |last3=Jeong |first3=Hongbae |last4=Hess |first4=Aaron T. |pmid=32845034 }}</ref><ref>{{Cite journal |date=13 January 2021 |title=Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model |journal=PLOS ONE |volume=16 |issue=1 |pages=e0241682 |pmc=7806143 |last1=Jeong |first1=H. |last2=Ntolkeras |first2=G. |last3=Alhilani |first3=M. |last4=Atefi |first4=S. R. |last5=Zöllei |first5=L. |last6=Fujimoto |first6=K. |last7=Pourvaziri |first7=A. |last8=Lev |first8=M. H. |last9=Grant |first9=P. E. |last10=Bonmassar |first10=G. |doi=10.1371/journal.pone.0241682 |pmid=33439896 |doi-access=free |bibcode=2021PLoSO..1641682J }}</ref><ref>{{Cite journal |date=2021 |title=Real-time assessment of potential peak local specific absorption rate value without phase monitoring: Trigonometric maximization method for worst-case local specific absorption rate determination |journal=Magnetic Resonance in Medicine |volume=85 |issue=6 |pages=3420–3433 |doi=10.1002/mrm.28635 |last1=Meliadò |first1=Ettore Flavio |last2=Sbrizzi |first2=Alessandro |last3=Van Den Berg |first3=Cornelis A. T. |last4=Luijten |first4=Peter R. |last5=Raaijmakers |first5=Alexander J. E. |pmid=33350525 |pmc=7986921 }}</ref> [[Non-invasive procedure|non-invasive]] methods of [[brain stimulation]],<ref>{{Cite journal |date=23 September 2022 |title=Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study |url=https://iopscience.iop.org/article/10.1088/1741-2552/ac9085/pdf |journal=Journal of Neural Engineering |volume=19 |pages=056020 |doi=10.1088/1741-2552/ac9085 |via=IOP Publishing |last1=Fiocchi |first1=Serena |last2=Chiaramello |first2=Emma |last3=Marrella |first3=Alessandra |last4=Bonato |first4=Marta |last5=Parazzini |first5=Marta |last6=Ravazzani |first6=Paolo |issue=5 |pmid=36075197 |bibcode=2022JNEng..19e6020F }}</ref><ref>{{Cite journal |date=2 February 2022 |title=Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation |journal=Scientific Reports |volume=12 |pages=1763 |doi=10.1038/s41598-022-04868-x |pmid=35110567 |bibcode=2022NatSR..12.1763G |last1=Gudvangen |first1=Emily |last2=Kim |first2=Vitalii |last3=Novickij |first3=Vitalij |last4=Battista |first4=Federico |last5=Pakhomov |first5=Andrei G. |issue=1 |pmc=8811018 }}</ref> and transcranial [[focused ultrasound]].<ref>{{Cite journal |date=February 3, 2022 |title=Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study |url=https://www.neuromodulationjournal.org/article/S1094-7159(21)06990-7/fulltext |journal=Neuromodulation: Technology at the Neural Interface |volume=25 |issue=4 |pages=606–613 |doi=10.1016/j.neurom.2021.12.012 |pmid=35125300 |via=Elsevier Inc. |last1=Truong |first1=D. Q. |last2=Thomas |first2=C. |last3=Hampstead |first3=B. M. |last4=Datta |first4=A. }}</ref><ref>{{Cite journal |date=August 2022 |title=Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus |url=https://www.sciencedirect.com/science/article/abs/pii/S0041624X22000373 |journal=Ultrasonics |volume=124 |pages=106724 |doi=10.1016/j.ultras.2022.106724 |pmid=35299039 |via=Elsevier Science Direct |last1=Huang |first1=Y. |last2=Wen |first2=P. |last3=Song |first3=B. |last4=Li |first4=Y. |s2cid=247423819 }}</ref>


Sim4Life V8.0, released in March 2024, is available as both a desktop version and as Sim4Life.web, an online version that runs in the cloud and can be used interchangeably with the desktop version.
'''Sim4Life''' is a simulation platform developed by the Foundation for Research on Information Technologies in Society (IT'IS) with funding from Innosuisse<ref>{{Cite web |date=27 November 2014 |title=Development of a Multiphysics Simulation Platform for Computational BioMed and Life Sciences (Sim4Life) |url=https://www.aramis.admin.ch/Grunddaten/?ProjectID=28397 |access-date=17 March 2024 |website=ARAMIS}}</ref><ref>{{Cite web |date=1 June 2015 |title=R and D project : S4L-CAPITALIS - Extension of the Sim4Life Platform (S4L) for Analysis and Optimization of the Neurovascular and Neurological Devices and Treatments in the Head |url=https://www.aramis.admin.ch/Texte/?ProjectID=34223&Sprache=en-US |access-date=17 March 2024 |website=ARAMIS}}</ref>, formerly known as CTI, the Swiss federal innovation agency. The platform combines classical technical [[Computer-aided design|computer-aided-design]] tools with multi-physics solvers, [[computational human phantom|computational human phantoms]], [[Medical image computing|medical-image-based modeling]], and [[Tissue (biology)|physiological tissue]] models. Sim4Life – marketed by IT'IS partner ZMT Zurich MedTech AG (ZMT) – is used by [[Medical research|medical researchers]] to investigate, for example, [[personalized medicine]], optimized treatment modalities,<ref>{{Cite journal |date=7 February 2022 |title=Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis |url=https://www.nature.com/articles/s41591-021-01663-5 |journal=Nature Medicine |volume=28 |pages=260–271 |via=Nature}}</ref> safety aspects of [[magnetic resonance imaging]],<ref>{{Cite journal |date=2021 |title=An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head |url=https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28467 |journal=Magnetic Resonance in Medicine |volume=85 |issue=2 |pages=1114–1122 |doi=10.1002/mrm.28467 |via=Wiley Online Library |last1=De Buck |first1=Matthijs H. S. |last2=Jezzard |first2=Peter |last3=Jeong |first3=Hongbae |last4=Hess |first4=Aaron T. |pmid=32845034 }}</ref><ref>{{Cite journal |date=13 January 2021 |title=Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model |journal=PLOS ONE |volume=16 |issue=1 |pages=e0241682 |pmc=7806143 |last1=Jeong |first1=H. |last2=Ntolkeras |first2=G. |last3=Alhilani |first3=M. |last4=Atefi |first4=S. R. |last5=Zöllei |first5=L. |last6=Fujimoto |first6=K. |last7=Pourvaziri |first7=A. |last8=Lev |first8=M. H. |last9=Grant |first9=P. E. |last10=Bonmassar |first10=G. |doi=10.1371/journal.pone.0241682 |pmid=33439896 |doi-access=free |bibcode=2021PLoSO..1641682J }}</ref><ref>{{Cite journal |date=2021 |title=Real-time assessment of potential peak local specific absorption rate value without phase monitoring: Trigonometric maximization method for worst-case local specific absorption rate determination |journal=Magnetic Resonance in Medicine |volume=85 |issue=6 |pages=3420–3433 |doi=10.1002/mrm.28635 |last1=Meliadò |first1=Ettore Flavio |last2=Sbrizzi |first2=Alessandro |last3=Van Den Berg |first3=Cornelis A. T. |last4=Luijten |first4=Peter R. |last5=Raaijmakers |first5=Alexander J. E. |pmid=33350525 |pmc=7986921 }}</ref> [[Non-invasive procedure|non-invasive]] methods of [[brain stimulation]],<ref>{{Cite journal |date=23 September 2022 |title=Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study |url=https://iopscience.iop.org/article/10.1088/1741-2552/ac9085/pdf |journal=Journal of Neural Engineering |volume=19 |pages=056020 |doi=10.1088/1741-2552/ac9085 |via=IOP Publishing |last1=Fiocchi |first1=Serena |last2=Chiaramello |first2=Emma |last3=Marrella |first3=Alessandra |last4=Bonato |first4=Marta |last5=Parazzini |first5=Marta |last6=Ravazzani |first6=Paolo |issue=5 |pmid=36075197 |bibcode=2022JNEng..19e6020F }}</ref><ref>{{Cite journal |date=2 February 2022 |title=Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation |journal=Scientific Reports |volume=12 |pages=1763 |doi=10.1038/s41598-022-04868-x |pmid=35110567 |bibcode=2022NatSR..12.1763G |last1=Gudvangen |first1=Emily |last2=Kim |first2=Vitalii |last3=Novickij |first3=Vitalij |last4=Battista |first4=Federico |last5=Pakhomov |first5=Andrei G. |issue=1 |pmc=8811018 }}</ref> and transcranial [[focused ultrasound]].<ref>{{Cite journal |date=February 3, 2022 |title=Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study |url=https://www.neuromodulationjournal.org/article/S1094-7159(21)06990-7/fulltext |journal=Neuromodulation: Technology at the Neural Interface |volume=25 |issue=4 |pages=606–613 |doi=10.1016/j.neurom.2021.12.012 |pmid=35125300 |via=Elsevier Inc. |last1=Truong |first1=D. Q. |last2=Thomas |first2=C. |last3=Hampstead |first3=B. M. |last4=Datta |first4=A. }}</ref><ref>{{Cite journal |date=August 2022 |title=Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus |url=https://www.sciencedirect.com/science/article/abs/pii/S0041624X22000373 |journal=Ultrasonics |volume=124 |pages=106724 |doi=10.1016/j.ultras.2022.106724 |pmid=35299039 |via=Elsevier Science Direct |last1=Huang |first1=Y. |last2=Wen |first2=P. |last3=Song |first3=B. |last4=Li |first4=Y. |s2cid=247423819 }}</ref>

Sim4Life V8.0, released in March 2024, is available as both a desktop version and as Sim4Life.web, a web version that runs natively in the cloud and can be used interchangeably with the desktop version.


{{Infobox Software
{{Infobox Software
| name = S4L<sup>lite</sup>
| name = <em>S4L<sup>lite</sup></em>
| logo =
| logo =
| developer = ZMT Zurich MedTech AG
| developer = ZMT Zurich MedTech AG
Line 39: Line 39:
}}
}}


''S4L<sup>lite</sup>'', an online version of Sim4Life that is free-of-charge for students, was released in February 2023 to facilitate team-learning and online collaboration on limited size projects with classmates and teachers.
''S4L<sup>lite</sup>'', an online version of Sim4Life that is free-of-charge for students, was released in February 2023 for team-learning and online collaboration on limited size projects with classmates and teachers.


Both Sim4Life.web and ''S4L<sup>lite</sup>'' are powered by [[Open source|open-source]] o²S²PARC<ref>{{Cite journal |last1=Osanlouy |first1=Mahyar |last2=Bandrowski |first2=Anita |last3=De Bono |first3=Bernard |last4=Brooks |first4=David |last5=Cassarà |first5=Antonino M. |last6=Christie |first6=Richard |last7=Ebrahimi |first7=Nazanin |last8=Gillespie |first8=Tom |last9=Grethe |first9=Jeffrey S. |last10=Guercio |first10=Leonardo A. |last11=Heal |first11=Maci |last12=Lin |first12=Mabelle |last13=Kuster |first13=Niels |last14=Martone |first14=Maryann E. |last15=Neufeld |first15=Esra |date=24 June 2021 |title=The SPARC DRC: Building a Resource for the Autonomic Nervous System Community |journal=Frontiers in Physiology |volume=12 |pages=693735 |doi=10.3389/fphys.2021.693735 |pmc=8265045 |pmid=34248680 |doi-access=free |last16=Nickerson |first16=David P. |last17=Soltani |first17=Elias G. |last18=Tappan |first18=Susan |last19=Wagenaar |first19=Joost B. |last20=Zhuang |first20=Katie |last21=Hunter |first21=Peter J.}}</ref> technologies, which were developed as part of the 'Stimulating Peripheral Activity to Relieve Conditions' (SPARC)<ref>{{Cite web |date=15 February 2023 |title=The SPARC computational modeling platform o²S²PARC now powers ZMT's S4Llite |url=https://sparc.science/news-and-events/news/5U9a8F2TgWKDiFH6Cyw51i |access-date=17 March 2024 |website=SPARC — bridging the body and the brain}}</ref> program of the [[National Institutes of Health Common Fund]] to enable collaborative, reproducible, and sustainable [[Computational neuroscience|computational neurosciences]].
Both Sim4Life.web and ''S4L<sup>lite</sup>'' are reliant on [[Open source|open-source]] o²S²PARC<ref>{{Cite journal |last1=Osanlouy |first1=Mahyar |last2=Bandrowski |first2=Anita |last3=De Bono |first3=Bernard |last4=Brooks |first4=David |last5=Cassarà |first5=Antonino M. |last6=Christie |first6=Richard |last7=Ebrahimi |first7=Nazanin |last8=Gillespie |first8=Tom |last9=Grethe |first9=Jeffrey S. |last10=Guercio |first10=Leonardo A. |last11=Heal |first11=Maci |last12=Lin |first12=Mabelle |last13=Kuster |first13=Niels |last14=Martone |first14=Maryann E. |last15=Neufeld |first15=Esra |date=24 June 2021 |title=The SPARC DRC: Building a Resource for the Autonomic Nervous System Community |journal=Frontiers in Physiology |volume=12 |pages=693735 |doi=10.3389/fphys.2021.693735 |pmc=8265045 |pmid=34248680 |doi-access=free |last16=Nickerson |first16=David P. |last17=Soltani |first17=Elias G. |last18=Tappan |first18=Susan |last19=Wagenaar |first19=Joost B. |last20=Zhuang |first20=Katie |last21=Hunter |first21=Peter J.}}</ref> technologies, which were developed as part of the 'Stimulating Peripheral Activity to Relieve Conditions' (SPARC)<ref>{{Cite web |date=15 February 2023 |title=The SPARC computational modeling platform o²S²PARC now powers ZMT's S4Llite |url=https://sparc.science/news-and-events/news/5U9a8F2TgWKDiFH6Cyw51i |access-date=17 March 2024 |website=SPARC — bridging the body and the brain}}</ref> program of the [[National Institutes of Health Common Fund]] to enable collaborative, reproducible, and sustainable [[Computational neuroscience|computational neurosciences]].


== References ==
== References ==

Revision as of 13:25, 28 March 2024

  • Comment: Needs alot more sources that are reliable and independent to the subject. WP:COMPANY...Reada like an advertisement ANUwrites 23:01, 17 March 2024 (UTC)

Sim4Life
Developer(s)ZMT Zurich MedTech AG
Stable release
V8.0 / March 14, 2024; 4 months ago (2024-03-14)
TypeComputer-aided design
Websitezmt.swiss/sim4life/
Sim4Life promotional image

Sim4Life is a simulation platform developed by the Foundation for Research on Information Technologies in Society (IT'IS) with funding from Innosuisse[1][2], formerly known as CTI, the Swiss federal innovation agency. The platform combines classical technical computer-aided-design tools with multi-physics solvers, computational human phantoms, medical-image-based modeling, and physiological tissue models. Sim4Life – marketed by IT'IS partner ZMT Zurich MedTech AG (ZMT) – is used by medical researchers to investigate, for example, personalized medicine and optimization of treatment modalities,[3][4] safety aspects of magnetic resonance imaging,[5][6][7] non-invasive methods of brain stimulation,[8][9] and transcranial focused ultrasound.[10][11]

Sim4Life V8.0, released in March 2024, is available as both a desktop version and as Sim4Life.web, an online version that runs in the cloud and can be used interchangeably with the desktop version.

S4Llite
Developer(s)ZMT Zurich MedTech AG
TypeComputer-aided design
Websites4l-lite.io

S4Llite, an online version of Sim4Life that is free-of-charge for students, was released in February 2023 for team-learning and online collaboration on limited size projects with classmates and teachers.

Both Sim4Life.web and S4Llite are reliant on open-source o²S²PARC[12] technologies, which were developed as part of the 'Stimulating Peripheral Activity to Relieve Conditions' (SPARC)[13] program of the National Institutes of Health Common Fund to enable collaborative, reproducible, and sustainable computational neurosciences.

References

  1. ^ "Development of a Multiphysics Simulation Platform for Computational BioMed and Life Sciences (Sim4Life)". ARAMIS. 27 November 2014. Retrieved 17 March 2024.
  2. ^ "R and D project : S4L-CAPITALIS - Extension of the Sim4Life Platform (S4L) for Analysis and Optimization of the Neurovascular and Neurological Devices and Treatments in the Head". ARAMIS. 1 June 2015. Retrieved 17 March 2024.
  3. ^ "Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis". Nature Medicine. 28: 260–271. 7 February 2022 – via Nature.
  4. ^ "Experimental and computational evaluation of capacitive hyperthermia". International Journal of Hyperthermia. 39 (1): 504–516. 16 Mar 2022 – via Taylor & Francis Online.
  5. ^ De Buck, Matthijs H. S.; Jezzard, Peter; Jeong, Hongbae; Hess, Aaron T. (2021). "An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head". Magnetic Resonance in Medicine. 85 (2): 1114–1122. doi:10.1002/mrm.28467. PMID 32845034 – via Wiley Online Library.
  6. ^ Jeong, H.; Ntolkeras, G.; Alhilani, M.; Atefi, S. R.; Zöllei, L.; Fujimoto, K.; Pourvaziri, A.; Lev, M. H.; Grant, P. E.; Bonmassar, G. (13 January 2021). "Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model". PLOS ONE. 16 (1): e0241682. Bibcode:2021PLoSO..1641682J. doi:10.1371/journal.pone.0241682. PMC 7806143. PMID 33439896.
  7. ^ Meliadò, Ettore Flavio; Sbrizzi, Alessandro; Van Den Berg, Cornelis A. T.; Luijten, Peter R.; Raaijmakers, Alexander J. E. (2021). "Real-time assessment of potential peak local specific absorption rate value without phase monitoring: Trigonometric maximization method for worst-case local specific absorption rate determination". Magnetic Resonance in Medicine. 85 (6): 3420–3433. doi:10.1002/mrm.28635. PMC 7986921. PMID 33350525.
  8. ^ Fiocchi, Serena; Chiaramello, Emma; Marrella, Alessandra; Bonato, Marta; Parazzini, Marta; Ravazzani, Paolo (23 September 2022). "Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study". Journal of Neural Engineering. 19 (5): 056020. Bibcode:2022JNEng..19e6020F. doi:10.1088/1741-2552/ac9085. PMID 36075197 – via IOP Publishing.
  9. ^ Gudvangen, Emily; Kim, Vitalii; Novickij, Vitalij; Battista, Federico; Pakhomov, Andrei G. (2 February 2022). "Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation". Scientific Reports. 12 (1): 1763. Bibcode:2022NatSR..12.1763G. doi:10.1038/s41598-022-04868-x. PMC 8811018. PMID 35110567.
  10. ^ Truong, D. Q.; Thomas, C.; Hampstead, B. M.; Datta, A. (February 3, 2022). "Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study". Neuromodulation: Technology at the Neural Interface. 25 (4): 606–613. doi:10.1016/j.neurom.2021.12.012. PMID 35125300 – via Elsevier Inc.
  11. ^ Huang, Y.; Wen, P.; Song, B.; Li, Y. (August 2022). "Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus". Ultrasonics. 124: 106724. doi:10.1016/j.ultras.2022.106724. PMID 35299039. S2CID 247423819 – via Elsevier Science Direct.
  12. ^ Osanlouy, Mahyar; Bandrowski, Anita; De Bono, Bernard; Brooks, David; Cassarà, Antonino M.; Christie, Richard; Ebrahimi, Nazanin; Gillespie, Tom; Grethe, Jeffrey S.; Guercio, Leonardo A.; Heal, Maci; Lin, Mabelle; Kuster, Niels; Martone, Maryann E.; Neufeld, Esra; Nickerson, David P.; Soltani, Elias G.; Tappan, Susan; Wagenaar, Joost B.; Zhuang, Katie; Hunter, Peter J. (24 June 2021). "The SPARC DRC: Building a Resource for the Autonomic Nervous System Community". Frontiers in Physiology. 12: 693735. doi:10.3389/fphys.2021.693735. PMC 8265045. PMID 34248680.
  13. ^ "The SPARC computational modeling platform o²S²PARC now powers ZMT's S4Llite". SPARC — bridging the body and the brain. 15 February 2023. Retrieved 17 March 2024.

External links[edit]

ZMT Zurich MedTech AG website, Sim4Life webpage

ZMT Zurich MedTech AG website, S4Llite webpage