Jump to content

Harvest now, decrypt later: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m ref work
Jamie (talk | contribs)
m Added reference to Y2Q. https://www.weforum.org/agenda/2023/10/y2q-cybersecurity-cyberattack-quantum-computing/
Line 1: Line 1:
{{Short description|Surveillance strategy}}
{{Short description|Surveillance strategy}}
{{Use dmy dates|date=February 2024}}
{{Use dmy dates|date=February 2024}}
'''Harvest now, decrypt later''', also known as '''store now, decrypt later''' or '''retrospective decryption''', is a surveillance strategy that relies on the acquisition and long-term storage of currently unreadable encrypted data awaiting possible breakthroughs in [[decryption]] technology that would render it readable in the future.<ref name=":0">{{Cite web |last=Townsend |first=Kevin |date=16 February 2022 |title=Solving the Quantum Decryption 'Harvest Now, Decrypt Later' Problem |url=https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem/ |access-date=9 April 2023 |website=SecurityWeek |language=en-US}}</ref><ref>{{Cite web |date=20 September 2022 |title=Half of organizations worry about quantum 'harvest now, decrypt later' attacks |url=https://siliconangle.com/2022/09/20/half-organizations-concerned-quantum-harvest-now-decrypt-later-attacks/ |access-date=9 April 2023 |website=SiliconANGLE |language=en-US}}</ref>
'''Harvest now, decrypt later''', also known as '''store now, decrypt later''' or '''retrospective decryption''', is a surveillance strategy that relies on the acquisition and long-term storage of currently unreadable encrypted data awaiting possible breakthroughs in [[decryption]] technology that would render it readable in the future - a hypothetical date referred to as Y2Q (a reference to [[Y2K]]).<ref name=":0">{{Cite web |last=Townsend |first=Kevin |date=16 February 2022 |title=Solving the Quantum Decryption 'Harvest Now, Decrypt Later' Problem |url=https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem/ |access-date=9 April 2023 |website=SecurityWeek |language=en-US}}</ref><ref>{{Cite web |date=20 September 2022 |title=Half of organizations worry about quantum 'harvest now, decrypt later' attacks |url=https://siliconangle.com/2022/09/20/half-organizations-concerned-quantum-harvest-now-decrypt-later-attacks/ |access-date=9 April 2023 |website=SiliconANGLE |language=en-US}}</ref>


The most common concern is the prospect of developments in [[quantum cryptography]] which would allow current [[strong encryption]] algorithms to be broken at some time in the future, making it possible to decrypt any stored material that had been encrypted using those algorithms.<ref>{{Cite web |date=2020 |title=Quantum Computing and Cryptography |url=https://edps.europa.eu/sites/edp/files/publication/06-08-2020_techdispatch_quantum_computing_en.pdf |access-date=9 April 2023 |website=[[European Data Protection Supervisor]] }}</ref> However, the improvement in decryption technology need not be due to a quantum-cryptographic advance; any other form of attack capable of enabling decryption would be sufficient.
The most common concern is the prospect of developments in [[quantum cryptography]] which would allow current [[strong encryption]] algorithms to be broken at some time in the future, making it possible to decrypt any stored material that had been encrypted using those algorithms.<ref>{{Cite web |date=2020 |title=Quantum Computing and Cryptography |url=https://edps.europa.eu/sites/edp/files/publication/06-08-2020_techdispatch_quantum_computing_en.pdf |access-date=9 April 2023 |website=[[European Data Protection Supervisor]] }}</ref> However, the improvement in decryption technology need not be due to a quantum-cryptographic advance; any other form of attack capable of enabling decryption would be sufficient.

Revision as of 18:09, 10 May 2024

Harvest now, decrypt later, also known as store now, decrypt later or retrospective decryption, is a surveillance strategy that relies on the acquisition and long-term storage of currently unreadable encrypted data awaiting possible breakthroughs in decryption technology that would render it readable in the future - a hypothetical date referred to as Y2Q (a reference to Y2K).[1][2]

The most common concern is the prospect of developments in quantum cryptography which would allow current strong encryption algorithms to be broken at some time in the future, making it possible to decrypt any stored material that had been encrypted using those algorithms.[3] However, the improvement in decryption technology need not be due to a quantum-cryptographic advance; any other form of attack capable of enabling decryption would be sufficient.

The existence of this strategy has led to concerns about the need to urgently deploy post-quantum cryptography, even though no practical quantum attacks yet exist, as some data stored now may still remain sensitive even decades into the future.[1][4][5] As of 2022, the U.S. federal government has proposed a roadmap for organizations to start migrating toward quantum-cryptography-resistant algorithms to mitigate these threats.[5][6]

References

  1. ^ a b Townsend, Kevin (16 February 2022). "Solving the Quantum Decryption 'Harvest Now, Decrypt Later' Problem". SecurityWeek. Retrieved 9 April 2023.
  2. ^ "Half of organizations worry about quantum 'harvest now, decrypt later' attacks". SiliconANGLE. 20 September 2022. Retrieved 9 April 2023.
  3. ^ "Quantum Computing and Cryptography" (PDF). European Data Protection Supervisor. 2020. Retrieved 9 April 2023.
  4. ^ "Quantum-Safe Secure Communications" (PDF). UK National Quantum Technologies Programme. October 2021. Retrieved 9 April 2023.
  5. ^ a b Liu, Nancy (27 September 2022). "'Harvest Now, Decrypt Later' Concern Boosts Quantum Security Awareness". Retrieved 10 April 2023.
  6. ^ "Prepare for a New Cryptographic Standard to Protect Against Future Quantum-Based Threats". Cybersecurity and Infrastructure Security Agency. 5 July 2022. Retrieved 10 April 2023.

See also