Jump to content

Copper(I) oxide: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
WP:SULF: Undid revision 248646320 by 129.31.212.190 (talk)
Removed some nonsense from 84.45.226.102 about it being an ingredient in Astroglide.. Nice one though. :D
Line 43: Line 43:


==General applications==
==General applications==
Cuprous oxide is commonly used as a [[pigment]], a [[fungicide]], a main ingredient in "Astroglide" and an anti[[fouling]] agent for marine paints.
Cuprous oxide is commonly used as a [[pigment]], a [[fungicide]], and an anti[[fouling]] agent for marine paints.
romp


==Applications as semiconductor==
==Applications as semiconductor==

Revision as of 21:43, 30 October 2008

Template:Chembox new Copper(I) oxide or cuprous oxide (Cu2O) is an oxide of copper. It is insoluble in water and organic solvents. Copper(I) oxide dissolves in concentrated ammonia solution to form the colorless complex [Cu(NH3)2]+, which easily oxidizes in air to the blue [Cu(NH3)4(H2O)2]2+. It dissolves in hydrochloric acid to form HCuCl2 (a complex of CuCl), while dilute sulfuric acid and nitric acid produce copper(II) sulfate and copper(II) nitrate, respectively.

Copper(I) oxide is found as the mineral cuprite in some red-colored rocks. When it is exposed to oxygen, copper will naturally oxidize to copper(I) oxide, but this takes extensive time. Artificial formation is usually accomplished at high temperature or at high oxygen pressure. With further heating, copper(I) oxide will form copper(II) oxide.

Formation of copper(I) oxide is the basis of the Fehling's test and Benedict's test for reducing sugars which reduce an alkaline solution of a copper(II) salt and give a precipitate of Cu2O.

Cuprous oxide forms on silver-plated copper parts exposed to moisture when the silver layer is porous or damaged; this kind of corrosion is known as red plague.

General applications

Cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints.

Applications as semiconductor

Copper(I) oxide was the first substance known to behave as a semiconductor. Rectifier diodes based on this material were used industrially as early as 1924, long before silicon became the standard.

Copper(I) oxide shows four well-understood series of excitons with resonance widths in the range of neV. The associated polaritons are also well understood; their group velocity turns out to be very low, almost down to the speed of sound. That means light moves almost as slow as sound in this medium. This results in high polariton densities, and effects like Bose-Einstein condensation, the dynamical Stark effect, and phonoritons have been demonstrated.

Another extraordinary feature of the ground state excitons is that all primary scattering mechanisms are known quantitatively. Cu2O was the first substance where an entirely parameter-free model of absorption linewidth broadening by temperature could be established, allowing the corresponding absorption coefficient to be deduced. It can be shown using Cu2O that the Kramers–Kronig relations do not apply to polaritons.

See also

References

  1. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, UK, 1997.
  2. Handbook of Chemistry and Physics, 71st edition, CRC Press, Ann Arbor, Michigan, 1990.
  3. The Merck Index, 7th edition, Merck & Co, Rahway, New Jersey, USA, 1960.
  4. D. Nicholls, Complexes and First-Row Transition Elements, Macmillan Press, London, 1973.
  5. P.W. Baumeister: Optical Absorption of Cuprous Oxide, Phys. Rev. 121 (1961), 359.
  6. L. Brillouin: Wave Propagation and Group Velocity, Academic Press, New York, 1960.
  7. D. Fröhlich, A. Kulik, B. Uebbing, and A. Mysyrovicz: Coherent Propagation and Quantum Beats of Quadrupole Polaritons in Cu2O, Phys. Rev. Lett. 67 (1991), 2343.
  8. L. Hanke: Transformation von Licht in Wärme in Kristallen - Lineare Absorption in Cu2O, ISBN 3-8265-7269-6, Shaker, Aachen, 2000; (Transformation of light into heat in crystals - Linear absorption in Cu2O).
  9. L. Hanke, D. Fröhlich, A.L. Ivanov, P.B. Littlewood, and H. Stolz: LA-Phonoritons in Cu2O, Phys. Rev. Lett. 83 (1999), 4365.
  10. L. Hanke, D. Fröhlich, and H. Stolz: Direct observation of longitudinal acoustic phonon absorption to the 1S-exciton in Cu2O, Sol. Stat. Comm. 112 (1999), 455.
  11. J.J. Hopfield, Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals, Phys. Rev. 112 (1958), 1555.
  12. J.P. Wolfe and A. Mysyrowicz: Excitonic Matter, Scientific American 250 (1984), No. 3, 98.
  13. Knovel Critical Tables., Knovel, 2003. http:knovel.com/knovel2/Toc.jsp?BookID=761&VerticalID=0