Pentagonal polytope: Difference between revisions
No edit summary |
|||
Line 16: | Line 16: | ||
# [[Order-3 120-cell honeycomb]], {5, 3, 3, 3} (tessellates hyperbolic 4-space (∞ [[120-cell]] facets) |
# [[Order-3 120-cell honeycomb]], {5, 3, 3, 3} (tessellates hyperbolic 4-space (∞ [[120-cell]] facets) |
||
The facets of each dodecahedral pentagonal polytope are the dodecahedral pentagonal polytopes of one less dimension. |
The facets of each dodecahedral pentagonal polytope are the dodecahedral pentagonal polytopes of one less dimension. Their vertex figures are the [[simplex|simplices]] of one less dimension. |
||
====Elements==== |
====Elements==== |
||
{| class="wikitable" |
{| class="wikitable" |
||
Line 93: | Line 93: | ||
# [[Order-5 5-cell honeycomb]], {3, 3, 3, 5} (tessellates hyperbolic 4-space (∞ [[5-cell]] facets) |
# [[Order-5 5-cell honeycomb]], {3, 3, 3, 5} (tessellates hyperbolic 4-space (∞ [[5-cell]] facets) |
||
The facets of each icosahedral pentagonal polytope are the [[simplex|simplices]] of one less dimension. |
The facets of each icosahedral pentagonal polytope are the [[simplex|simplices]] of one less dimension. Their vertex figures are icosahedral pentagonal polytopes of one less dimension. |
||
====Elements==== |
====Elements==== |
||
{| class="wikitable" |
{| class="wikitable" |
||
Line 165: | Line 165: | ||
{{reflist}} |
{{reflist}} |
||
{{polytopes}} |
{{polytopes}} |
||
[[Category:Polytopes]] |
Revision as of 11:27, 8 September 2011
In geometry, a pentagonal polytope[1] is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by George Olshevsky, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n - 1} (dodecahedral) or {3n - 1, 5} (icosahedral).
Such polytopes can always be stellated to form new star regular polytopes. In two dimensions, this forms the pentagram; in three dimensions, this forms the Kepler-Poinsot polyhedra; and in four dimensions, this forms the Schläfli-Hess polychora.
Family members
The family starts as 1-polytopes and ends with n = 5 as infinite tessellations of 4-dimensional hyperbolic space.
There are two types of pentagonal polytopes; they may be termed the dodecahedral and icosahedral types, by their three-dimensional members. The two types are duals of each other.
Dodecahedral
The complete family of dodecahedral pentagonal polytopes are:
- Line segment, {}
- Pentagon, {5}
- Dodecahedron, {5, 3} (12 pentagonal faces)
- 120-cell, {5, 3, 3} (120 dodecahedral cells)
- Order-3 120-cell honeycomb, {5, 3, 3, 3} (tessellates hyperbolic 4-space (∞ 120-cell facets)
The facets of each dodecahedral pentagonal polytope are the dodecahedral pentagonal polytopes of one less dimension. Their vertex figures are the simplices of one less dimension.
Elements
n | Petrie polygon projection |
Name Coxeter-Dynkin diagram Schläfli symbol |
Facets | Elements | ||||
---|---|---|---|---|---|---|---|---|
Vertices | Edges | Faces | Cells | 4-faces | ||||
1 | Line segment {} |
2 points | 2 | |||||
2 | Pentagon {5} |
5 line segments | 5 | 5 | ||||
3 | Dodecahedron {5, 3} |
12 pentagons |
20 | 30 | 12 | |||
4 | 120-cell {5, 3, 3} |
120 dodecahedra |
600 | 1200 | 720 | 120 | ||
5 | Order-3 120-cell honeycomb {5, 3, 3, 3} |
∞ 120-cells |
∞ | ∞ | ∞ | ∞ | ∞ |
Icosahedral
The complete family of icosahedral pentagonal polytopes are:
- Line segment, {}
- Pentagon, {5}
- Icosahedron, {3, 5} (20 triangular faces)
- 600-cell, {3, 3, 5} (120 tetrahedron cells)
- Order-5 5-cell honeycomb, {3, 3, 3, 5} (tessellates hyperbolic 4-space (∞ 5-cell facets)
The facets of each icosahedral pentagonal polytope are the simplices of one less dimension. Their vertex figures are icosahedral pentagonal polytopes of one less dimension.
Elements
n | Petrie polygon projection |
Name Coxeter-Dynkin diagram Schläfli symbol |
Facets | Elements | ||||
---|---|---|---|---|---|---|---|---|
Vertices | Edges | Faces | Cells | 4-faces | ||||
1 | Line segment {} |
2 points | 2 | |||||
2 | Pentagon {5} |
5 line segments | 5 | 5 | ||||
3 | Icosahedron {3, 5} |
20 equilateral triangles |
12 | 30 | 20 | |||
4 | 600-cell {3, 3, 5} |
600 tetrahedra |
120 | 720 | 1200 | 600 | ||
5 | Order-5 5-cell honeycomb {3, 3, 3, 5} |
∞ 5-cells |
∞ | ∞ | ∞ | ∞ | ∞ |
References
- ^ Olshevsky, George. Glossary for Hyperspace https://web.archive.org/web/20070204075028/members.aol.com/Polycell/glossary.html#{{{anchor}}}. Archived from the original on 4 February 2007.
{{cite web}}
: Missing or empty|title=
(help)