Jump to content

Biomolecule: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 4: Line 4:


==Types of biomolecules==
==Types of biomolecules==
A diverse range of butts exist, including:
A diverse range of biomolecules exist, including:


* [[Small molecule]]s:
* [[Small molecule]]s:

Revision as of 12:25, 17 October 2011

A representation of the 3D structure of myoglobin, showing coloured alpha helices. This protein was the first to have its structure solved by X-ray crystallography by Max Perutz and Sir John Cowdery Kendrew in 1958, for which they received a Nobel Prize in Chemistry.

A biomolecule is any molecule that is produced by a living organism, including large polymeric molecules such as proteins, polysaccharides, lipids, and nucleic acids as well as small molecules such as primary metabolites, secondary metabolites, and natural products. A more general name for this class of molecules is a biogenic substance.

Types of biomolecules

A diverse range of biomolecules exist, including:

Biomonomers Bio-oligomers Biopolymers Polymerization process Covalent Bond name between monomers
Amino acids Oligopeptides Polypeptides, proteins (hemoglobin...) Polycondensation Peptide bond
Monosaccharides Oligosaccharides Polysaccharides (cellulose...) Polycondensation Glycosidic bond
Isoprene Terpenes Polyterpenes: cis-1,4-polyisoprene natural rubber and trans-1,4-polyisoprene gutta-percha Polyaddition
Nucleotides Oligonucleotides Polynucleotides, nucleic acids (DNA, RNA) Phosphodiester bond

Nucleosides and nucleotides

Nucleosides are molecules formed by attaching a nucleobase to a ribose ring. Examples of these include cytidine, uridine, adenosine, guanosine, thymidine and inosine.

Nucleosides can be phosphorylated by specific kinases in the cell, producing nucleotides. Both DNA and RNA are polymers, consisting of long, linear molecules. The repeating structural units, or monomers, of the nucleic acids are called nucleotides.[1]

Each nucleotide is made of an acyclic nitrogenous base, a pentose and one to three phosphate groups. They contain carbon, nitrogen, oxygen, hydrogen and phosphorus. They serve as sources of chemical energy (adenosine triphosphate and guanosine triphosphate), participate in cellular signaling (cyclic guanosine monophosphate and cyclic adenosine monophosphate), and are incorporated into important cofactors of enzymatic reactions (coenzyme A, flavin adenine dinucleotide, flavin mononucleotide, and nicotinamide adenine dinucleotide phosphate).[2]

Saccharides

Monosaccharides are the simplest form of carbohydrates with only one simple sugar. They essentially contain an aldehyde or ketone group in their structure.[3] The presence of an aldehyde group in a monosaccharide is indicated by the prefix aldo-. Similarly, a ketone group is denoted by the prefix keto-.[1] Examples of monosaccharides are the hexoses glucose, fructose, and galactose and pentoses, ribose, and deoxyribose Consumed fructose and glucose have different rates of gastric emptying, are differentially absorbed and have different metabolic fates, providing multiple opportunities for 2 different saccharides to differentially affect food intake.[3]

Disaccharides are formed when two monosaccharides, or two single simple sugars, form a bond with removal of water. They can be hydrolyzed to yield their saccharin building blocks by boiling with dilute acid or reacting them with appropriate enzymes.[1] Examples of disaccharides include sucrose, maltose, and lactose.

Polysaccharides are polymerized monosaccharides, complex, carbohydrates. They have multiple simple sugars. Examples are starch, cellulose, and glycogen. They are generally large and often have a complex branched connectivity. Because of their size, polysaccharides are not water-soluble, but their many hydroxy groups become hydrated individually when exposed to water, and some polysaccharides form thick colloidal dispersions when heated in water.[1] Shorter polysaccharides, with 3 - 10 monomers, are called oligosaccharides.[4] A fluorescent indicator-displacement molecular imprinting sensor was developed for discriminating saccharides. It successfully discriminated three brands of orange juice beverage.[5] The change in fluorescence intensity of the sensing films resulting is directly related to the saccharide concentration.[6]

Lignin

Lignin is a complex polyphenolic macromolecule composed mainly of beta-O4-aryl linkages. After cellulose, lignin is the second most abundant biopolymer and is one of the primary structural components of most plants. It contains subunits derived from p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol[7] and is unusual among biomolecules in that it is racemic. The lack of optical activity is due to the polymerization of lignin which occurs via free radical coupling reactions in which there is no preference for either configuration at a chiral center.

Lipids

Lipids are chiefly fatty acid esters, and are the basic building blocks of biological membranes. Another biological role is energy storage (e.g., triglycerides). Most lipids consist of a polar or hydrophilic head (typically glycerol) and one to three nonpolar or hydrophobic fatty acid tails, and therefore they are amphiphilic. Fatty acids consist of unbranched chains of carbon atoms that are connected by single bonds alone (saturated fatty acids) or by both single and double bonds (unsaturated fatty acids). The chains are usually 14-24 carbon groups long, but it is always an even number.

For lipids present in biological membranes, the hydrophilic head is from one of three classes:

  • Glycolipids, whose heads contain an oligosaccharide with 1-15 saccharide residues.
  • Phospholipids, whose heads contain a positively charged group that is linked to the tail by a negatively charged phosphate group.
  • Sterols, whose heads contain a planar steroid ring, for example, cholesterol.

Other lipids include prostaglandins and leukotrienes which are both 20-carbon fatty acyl units synthesized from arachidonic acid. They are also known as fatty acids

Amino acids

Amino acids contain both amino and carboxylic acid functional groups. (In biochemistry, the term amino acid is used when referring to those amino acids in which the amino and carboxylate functionalities are attached to the same carbon, plus proline which is not actually an amino acid).

Aminoty are observed in proteins, this is usually the result of modification after translation (protein synthesis). Only two amino acids other than the standard twenty are known to be incorporated into proteins during translation, in certain organisms:

Besides those used in protein synthesis, other biologically important amino acids include carnitine (used in lipid transport within a cell), ornithine, GABA and taurine.

Ptein structure

The particular series of amino acids that form a protein is known as that protein's primary structure. This sequence is determined by the genetic makeup of the individual. Proteins have several, well-classified, elements of local structure formed by intermolecular attraction, this forms the secondary structure of protein. They are broadly divided in two, alpha helix and beta sheet, also called beta pleated sheets. Alpha helices are formed of coiling of protein due to attraction between amine group of one amino acid with carboxylic acid group of other. The coil contains about 3.6 amino acids per turn and the alkyl group of amino acid lie outside the plane of coil. Beta pleated sheets are formed by strong continuous hydrogen bond over the length of protein chain. Bonding may be parallel or antiparallel in nature. Structurally, natural silk is formed of beta pleated sheets. Usually, a protein is formed by action of both these structures in variable ratios. Coiling may also be random. The overall 3D structure of a protein is termed its tertiary structure. It is formed as result of various forces like hydrogen bonding, disulfide bridges, hydrophobic interactions, hydrophilic interactions, van der Waals force etc. When two or more different polypeptide chains cluster to form a protein, quaternary structure of protein is formed. Quaternary structure is a unique attribute of polymeric and heteromeric proteins like hemoglobin, which consists of two alpha and two beta peptide chains.

Apoenzymes

An apoenzyme is the inactive storage and generally secretory form of a protein. This is required to protect the secretory cell from the activity of that protein. Apoenzymes becomes active enzyme on addition of a cofactor. Cofactors can be either inorganic (e.g., metal ions and iron-sulfur clusters) or organic compounds, (e.g., flavin and heme). Organic cofactors can be either prosthetic groups, which are tightly bound to an enzyme, or coenzymes, which are released from the enzyme's active site during the reaction.

Isoenzymes

Isoenzymes are enzymes with similar function but different structure. They are products of different genes. They are produced in different organs to perform the same function. LDH are examples of such enzymes. Their varied levels in blood are used to determine any deformity in the organ of secretion.

Vitamins

A vitamin is a compound that is generally not synthesized by a given organism but is nonetheless vital to its survival or health (for example coenzymes). These compounds must be absorbed, or eaten, but typically only in trace quantities. When originally proposed by Casimir Funk, a Polish biochemist, he believed them to all be basic and therefore named them vital amines. The "l" was later dropped to form the word vitamines.

See also

References

  1. ^ a b c d Slabaugh, Michael R., and Seager, Spencer L. (2007). Organic and Biochemistry for Today (6th ed.). Pacific Grove: Brooks Cole. ISBN 0-495-11280-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ Alberts B, Johnson A, Lewis J, Raff M, Roberts K & Wlater P (2002). Molecular biology of the cell (4th ed.). New York: Garland Science. pp. 120–1. ISBN 0-8153-3218-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b Peng, Bo, and Yu Qin (2009). "Fructose and Satiety". Journal of Nutrition: 6137–42. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  4. ^ Pigman, W. (1972). The Carbohydrates. Vol. 1A. San Diego: Academic Press. p. 3. ISBN 68-26647. {{cite book}}: Check |isbn= value: length (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ Jin, Tan, Wang He-Fang, and Yan Xiu-Ping (2009). "Discrimination of Saccharides with a Fluorescent Molecular Imprinting Sensor Array Based on Phenylboronic Acid Functionalized Mesoporous Silica". Anal. Chem. 81 (13): 5273–80. doi:10.1021/ac900484x. PMID 19507843.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Bo Peng and Yu Qin (2008). "Lipophilic Polymer Membrane Optical Sensor with a Synthetic Receptor for Saccharide Detection". Anal. Chem. 80 (15): 6137–41. doi:10.1021/ac800946p. PMID 18593197.
  7. ^ K. Freudenberg & A.C. Nash (eds) (1968). Constitution and Biosynthesis of Lignin. Berlin: Springer-Verlag. {{cite book}}: |author= has generic name (help)