Jump to content

Energy density Extended Reference Table: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Created page with '<!-- To ensure this table sorts correctly: avoid using "-" or unicode dash in columns with numbers; ensure each row has a numeric value, use <span style="display...'
 
Line 1: Line 1:
This is extended version of energy density table from the main page [[Energy density]]

<!-- To ensure this table sorts correctly: avoid using "-" or unicode dash in columns with numbers; ensure each row has a numeric value, use <span style="display:none">0</span> if unknown; do not use ? or {{?}}. Test changes on several browsers as sort behaviour may vary. -->
<!-- To ensure this table sorts correctly: avoid using "-" or unicode dash in columns with numbers; ensure each row has a numeric value, use <span style="display:none">0</span> if unknown; do not use ? or {{?}}. Test changes on several browsers as sort behaviour may vary. -->
{|class="wikitable sortable" style="text-align: right;"
{|class="wikitable sortable" style="text-align: right;"
Line 148: Line 150:


{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}

[[Category:Energy storage]]

Revision as of 10:03, 14 December 2012

This is extended version of energy density table from the main page Energy density

Energy Densities Table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Indeterminate Antimatter ≈89,876,000,000 not applicable
Deuterium-tritium fusion 576,000,000
Uranium-235 used in nuclear weapons 144,000,000 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000[1]
Reactor-grade uranium (3.5% U-235) in light water reactor 3,456,000 30%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light water reactor 443,000 30%
Ta-180m isomer 41,340 689,964
Specific orbital energy of Low Earth orbit (approximate) 33
Beryllium + Oxygen 23.9[2]
Lithium + Fluorine 23.75[citation needed]
Octaazacubane potential explosive 22.9[3]
Dinitroacetylene explosive - computed[citation needed] 9.8
Octanitrocubane explosive 8.5[4] 16.9[5]
Tetranitrotetrahedrane explosive - computed[citation needed] 8.3
Heptanitrocubane explosive - computed[citation needed] 8.2
Sodium (reacted with chlorine)[citation needed] 7.0349
Hexanitrobenzene explosive 7[6]
Tetranitrocubane explosive - computed[citation needed] 6.95
Ammonal (Al+NH4NO3 oxidizer)[citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant - computed[citation needed] 6.6
Nitroglycerin 6.38[7] 10.2[8]
ANFO-ANNM[citation needed] 6.26
Octogen (HMX) 5.7[7] 10.8[9]
TNT [Kinney, G.F. (1985). Explosive shocks in air. Springer-Verlag. ISBN 3-540-15147-8. {{cite book}}: Cite has empty unknown parameter: |month= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)][citation needed] 4.610 6.92
Copper Thermite (Al + CuO as oxidizer)[citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
battery, Lithium ion nanowire 2.54 29 95%[clarification needed][10]
battery, Lithium Thionyl Chloride (LiSOCl2)[11] 2.5
Water 220.64 bar, 373.8°C[citation needed][clarification needed] 1.968 0.708
Kinetic energy penetrator [clarification needed] 1.9 30
battery, Fluoride ion [citation needed] 1.7 2.8
battery, Hydrogen closed cycle H fuel cell[12] Template:Smn 1.62
Hydrazine(toxic) decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Thermal Energy Capacity of Molten Salt 1[citation needed] 98%[13]
Molecular spring approximate[citation needed] 1
battery, Sodium Sulfur .72[14] 1.23[citation needed] 85%[15]
battery, Lithium-manganese[16][17] 0.83-1.01 1.98-2.09
battery, Lithium ion[18][19] 0.46-0.72 0.83-3.6[20] 95%[21]
battery, Lithium Sulphur[22] 1.80[23] 1.80
battery (Sodium Nickel Chloride), High Temperature 0.56
battery, Silver-oxide[16] 0.47 1.8
Flywheel 0.36-0.5[24][25]
5.56 × 45 mm NATO bullet[clarification needed] 0.4 3.2
battery, Nickel metal hydride (NiMH), low power design as used in consumer batteries[26] 0.4 1.55
battery, Zinc-manganese (alkaline), long life design[16][18] 0.4-0.59 1.15-1.43
Liquid Nitrogen 0.349
Water - Enthalpy of Fusion 0.334 0.334
battery, Zinc Bromine flow (ZnBr)[27] 0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars[28] 0.250 0.493
battery, Nickel cadmium (NiCd)[18] 0.14 1.08 80%[21]
battery, Zinc-Carbon[18] 0.13 0.331
battery, Lead acid[18] 0.14 0.36
battery, Vanadium redox 0.09[citation needed] 0.1188 7070-75%
battery, Vanadium Bromide redox 0.18 0.252 80%–90%[29]
Capacitor Ultracapacitor 0.0199[30] 0.050[citation needed]
Capacitor Supercapacitor 0.01[citation needed] 80%–98.5%[31] 39%–70%[31]
Superconducting magnetic energy storage 0 0.008[32] >95%
Capacitor 0.002[33]
Neodymium magnet 0.003[34]
Ferrite magnet 0.0003[34]
Spring power (clock spring), torsion spring 0.0003[35] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
  1. ^ Cite error: The named reference cohen was invoked but never defined (see the help page).
  2. ^ "The Heat of Formation of Beryllium Oxide1 - Journal of the American Chemical Society (ACS Publications)". Pubs.acs.org. 2002-05-01. Retrieved 2010-05-07.
  3. ^ "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?† - Inorganic Chemistry (ACS Publications)". Pubs.acs.org. 1996-05-28. Retrieved 2010-05-07.
  4. ^ http://www3.interscience.wiley.com/journal/122324589/abstract
  5. ^ "Octanitrocubane - Wikipedia, the free encyclopedia". En.wikipedia.org. Retrieved 2010-05-07.
  6. ^ http://www3.interscience.wiley.com/journal/109618256/abstract
  7. ^ a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  8. ^ Česky. "Nitroglycerin - Wikipedia, the free encyclopedia". En.wikipedia.org. Retrieved 2010-05-07.
  9. ^ Česky (2010-05-01). "HMX - Wikipedia, the free encyclopedia". En.wikipedia.org. Retrieved 2010-05-07.
  10. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Retrieved 2010-05-07.
  11. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Retrieved 2010-05-07.
  12. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Retrieved 2010-05-07.
  13. ^ "Technology". SolarReserve. Retrieved 2010-05-07.
  14. ^ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Retrieved 2010-05-07.
  15. ^ "Energy Citations Database (ECD) - - Document #5960185". Osti.gov. Retrieved 2010-05-07.
  16. ^ a b c "ProCell Lithium battery chemistry". Duracell. Retrieved 2009-04-21. Cite error: The named reference "duracell-Ag2O" was defined multiple times with different content (see the help page).
  17. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  18. ^ a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Retrieved 2009-04-21.
  19. ^ A typically available lithium ion cell with an Energy Density of 201 wh/kg [1]
  20. ^ "Lithium Batteries". Retrieved 2010-07-02.
  21. ^ a b Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  22. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28.
  23. ^ Kolosnitsyn, V.S. (2008). "Lithium-sulfur batteries: Problems and solutions". Maik Nauka/Interperiodica/Springer: 506–509. doi:10.1134/s1023193508050029. {{cite journal}}: |access-date= requires |url= (help); Cite journal requires |journal= (help); Unknown parameter |coauthor= ignored (|author= suggested) (help)
  24. ^ Storage Technology Report, ST6 Flywheel
  25. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Retrieved 2009-05-21.
  26. ^ Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008
  27. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  28. ^ High Energy Metal Hydride Battery
  29. ^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Retrieved 2010-05-07.
  30. ^ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  31. ^ a b http://www2.fs.cvut.cz/web/fileadmin/documents/12241-BOZEK/publikace/2004/Sup-Cap-Energy-Storage.pdf
  32. ^ [2][dead link]
  33. ^ http://www.doc.ic.ac.uk/~mpj01/ise2grp/energystorage_report/node9.html
  34. ^ a b http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf
  35. ^ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.