Jump to content

Cell (biology): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
this will do (though that article needs to be updated to describe intracellular processes)
mNo edit summary
Line 11: Line 11:
The '''cell''' is the basic structural, functional and biological unit of all known [[Life|living]] [[organism]]s. Cells are the smallest unit of life that can [[Cell division|replicate]] independently, and are often called the "building blocks of life".
The '''cell''' is the basic structural, functional and biological unit of all known [[Life|living]] [[organism]]s. Cells are the smallest unit of life that can [[Cell division|replicate]] independently, and are often called the "building blocks of life".


Cells consist of a [[protoplasm]] enclosed within a membrane, which contains many biomolecules such as [[proteins]] and [[nucleic acids]].<ref name="Alberts2002">[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=Cell+Movements+and+the+Shaping+of+the+Vertebrate+Body+AND+mboc4%5Bbook%5D+AND+374635%5Buid%5D&rid=mboc4.section.3919 Cell Movements and the Shaping of the Vertebrate Body] in Chapter 21 of ''[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=cell+biology+AND+mboc4%5Bbook%5D+AND+373693%5Buid%5D&rid=mboc4 Molecular Biology of the Cell]'' fourth edition, edited by Bruce Alberts (2002) published by Garland Science.<br /> The Alberts text discusses how the "cellular building blocks" move to shape developing [[embryo]]s. It is also common to describe small molecules such as [[amino acid]]s as "[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=%22all+cells%22+AND+mboc4%5Bbook%5D+AND+372023%5Buid%5D&rid=mboc4.section.4#23 molecular building blocks]".</ref> Organisms can be classified as [[unicellular]] (consisting of a single cell; including most [[bacteria]]) or [[multicellular]] (including [[plants]] and [[animals]]). While the number of cells in plants and animals varies from species to species, humans contain about 100 [[Orders of magnitude (numbers)#1012|trillion]] (10<sup>14</sup>) cells.<ref>{{cite book|last=Lodish|title=Molecular Cell Biology,6e|year=2007|publisher=W.H.Freeman and Company|isbn=0-7167-7601-4}}</ref> Most plant and animal cells are visible only under the microscope, with dimensions between 1 and 100&nbsp;[[micrometre]]s.<ref>{{cite book | last = Campbell | first = Neil A. | authorlink = | coauthors = Brad Williamson; Robin J. Heyden | title = Biology: Exploring Life | publisher = Pearson Prentice Hall | year = 2006 | location = Boston, Massachusetts | pages = | url = http://www.phschool.com/el_marketing.html | doi = | id = | isbn = 0-13-250882-6 }}</ref>
Cells consist of a [[protoplasm]] enclosed within a [[Cell membrane|membrane]], which contains many biomolecules such as [[proteins]] and [[nucleic acids]].<ref name="Alberts2002">[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=Cell+Movements+and+the+Shaping+of+the+Vertebrate+Body+AND+mboc4%5Bbook%5D+AND+374635%5Buid%5D&rid=mboc4.section.3919 Cell Movements and the Shaping of the Vertebrate Body] in Chapter 21 of ''[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=cell+biology+AND+mboc4%5Bbook%5D+AND+373693%5Buid%5D&rid=mboc4 Molecular Biology of the Cell]'' fourth edition, edited by Bruce Alberts (2002) published by Garland Science.<br /> The Alberts text discusses how the "cellular building blocks" move to shape developing [[embryo]]s. It is also common to describe small molecules such as [[amino acid]]s as "[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=%22all+cells%22+AND+mboc4%5Bbook%5D+AND+372023%5Buid%5D&rid=mboc4.section.4#23 molecular building blocks]".</ref> Organisms can be classified as [[unicellular]] (consisting of a single cell; including most [[bacteria]]) or [[multicellular]] (including [[plants]] and [[animals]]). While the number of cells in plants and animals varies from species to species, humans contain about 100 [[Orders of magnitude (numbers)#1012|trillion]] (10<sup>14</sup>) cells.<ref>{{cite book|last=Lodish|title=Molecular Cell Biology,6e|year=2007|publisher=W.H.Freeman and Company|isbn=0-7167-7601-4}}</ref> Most plant and animal cells are visible only under the microscope, with dimensions between 1 and 100&nbsp;[[micrometre]]s.<ref>{{cite book | last = Campbell | first = Neil A. | authorlink = | coauthors = Brad Williamson; Robin J. Heyden | title = Biology: Exploring Life | publisher = Pearson Prentice Hall | year = 2006 | location = Boston, Massachusetts | pages = | url = http://www.phschool.com/el_marketing.html | doi = | id = | isbn = 0-13-250882-6 }}</ref>


The cell was discovered by [[Robert Hooke]] in 1665. The [[cell theory]], first developed in 1839 by [[Matthias Jakob Schleiden]] and [[Theodor Schwann]], states that all organisms are composed of one or more cells, that all cells come from preexisting cells, that vital [[Biological process|function]]s of an organism occur within cells, and that all cells contain the [[genetics|hereditary information]] necessary for regulating cell functions and for transmitting information to the next generation of cells.<ref>{{cite book
The cell was discovered by [[Robert Hooke]] in 1665. The [[cell theory]], first developed in 1839 by [[Matthias Jakob Schleiden]] and [[Theodor Schwann]], states that all organisms are composed of one or more cells, that all cells come from preexisting cells, that vital [[Biological process|function]]s of an organism occur within cells, and that all cells contain the [[genetics|hereditary information]] necessary for regulating cell functions and for transmitting information to the next generation of cells.<ref>{{cite book

Revision as of 09:40, 17 November 2013

Cell
Onion (Allium) cells in different phases of the cell cycle
The cells of eukaryotes (left) and prokaryotes (right)
Identifiers
MeSHD002477
THH1.00.01.0.00001
FMA686465
Anatomical terminology

The cell is the basic structural, functional and biological unit of all known living organisms. Cells are the smallest unit of life that can replicate independently, and are often called the "building blocks of life".

Cells consist of a protoplasm enclosed within a membrane, which contains many biomolecules such as proteins and nucleic acids.[1] Organisms can be classified as unicellular (consisting of a single cell; including most bacteria) or multicellular (including plants and animals). While the number of cells in plants and animals varies from species to species, humans contain about 100 trillion (1014) cells.[2] Most plant and animal cells are visible only under the microscope, with dimensions between 1 and 100 micrometres.[3]

The cell was discovered by Robert Hooke in 1665. The cell theory, first developed in 1839 by Matthias Jakob Schleiden and Theodor Schwann, states that all organisms are composed of one or more cells, that all cells come from preexisting cells, that vital functions of an organism occur within cells, and that all cells contain the hereditary information necessary for regulating cell functions and for transmitting information to the next generation of cells.[4] Cells emerged on Earth at least 3.5 billion years ago.[5][6][7]

The word cell comes from the Latin cella, meaning "small room".[8] It was coined by Robert Hooke in his book Micrographia (1665), in which he compared the cork cells he saw through his microscope to the small rooms monks lived in.[9]

Anatomy

There are two types of cells, eukaryotes, which contain a nucleus, and prokaryotes, which do not. Prokaryotic cells are usually single-celled organisms, while eukaryotic cells can be either single-celled or part of multicellular organisms.

Table 1: Comparison of features of prokaryotic and eukaryotic cells
  Prokaryotes Eukaryotes
Typical organisms bacteria, archaea protists, fungi, plants, animals
Typical size ~ 1–5 µm[10] ~ 10–100 µm[10]
Type of nucleus nucleoid region; no true nucleus true nucleus with double membrane
DNA circular (usually) linear molecules (chromosomes) with histone proteins
RNA/protein synthesis coupled in the cytoplasm RNA synthesis in the nucleus
protein synthesis in the cytoplasm
Ribosomes 50S and 30S 60S and 40S
Cytoplasmic structure very few structures highly structured by endomembranes and a cytoskeleton
Cell movement flagella made of flagellin flagella and cilia containing microtubules; lamellipodia and filopodia containing actin
Mitochondria none one to several thousand (though some lack mitochondria)
Chloroplasts none in algae and plants
Organization usually single cells single cells, colonies, higher multicellular organisms with specialized cells
Cell division Binary fission (simple division) Mitosis (fission or budding)
Meiosis

Prokaryotic cells

Diagram of a typical prokaryotic cell

Prokaryotic cells were the first form of life on Earth. They are simpler and smaller than eukaryotic cells, and lack membrane-bound organelles such as the nucleus. Prokaryotes include two of the domains of life, bacteria and archaea. The DNA of a prokaryotic cell consists of a single chromosome that is in direct contact with the cytoplasm. The nuclear region in the cytoplasm is called the nucleoid.

A prokaryotic cell has three architectural regions:

  • On the outside, flagella and pili project from the cell's surface. These are structures (not present in all prokaryotes) made of proteins that facilitate movement and communication between cells.
  • Enclosing the cell is the cell envelope – generally consisting of a cell wall covering a plasma membrane though some bacteria also have a further covering layer called a capsule. The envelope gives rigidity to the cell and separates the interior of the cell from its environment, serving as a protective filter. Though most prokaryotes have a cell wall, there are exceptions such as Mycoplasma (bacteria) and Thermoplasma (archaea). The cell wall consists of peptidoglycan in bacteria, and acts as an additional barrier against exterior forces. It also prevents the cell from expanding and bursting (cytolysis) from osmotic pressure due to a hypotonic environment. Some eukaryotic cells (plant cells and fungal cells) also have a cell wall.
  • Inside the cell is the cytoplasmic region that contains the genome (DNA), ribosomes and various sorts of inclusions. The prokaryotic chromosome is usually a circular molecule (an exception is that of the bacterium Borrelia burgdorferi, which causes Lyme disease).[11] Though not forming a nucleus, the DNA is condensed in a nucleoid. Prokaryotes can carry extrachromosomal DNA elements called plasmids, which are usually circular. Plasmids encode additional genes, such as antibiotic resistance genes.

Eukaryotic cells

Plants, animals, fungi, slime moulds, protozoa, and algae are all eukaryotic. These cells are about fifteen times wider than a typical prokaryote and can be as much as a thousand times greater in volume. The main distinguishing feature of eukaryotes as compared to prokaryotes is compartmentalization: the presence of membrane-bound compartments in which specific metabolic activities take place. Most important among these is a cell nucleus, a membrane-delineated compartment that houses the eukaryotic cell's DNA. This nucleus gives the eukaryote its name, which means "true nucleus." Other differences include:

  • The plasma membrane resembles that of prokaryotes in function, with minor differences in the setup. Cell walls may or may not be present.
  • The eukaryotic DNA is organized in one or more linear molecules, called chromosomes, which are associated with histone proteins. All chromosomal DNA is stored in the cell nucleus, separated from the cytoplasm by a membrane. Some eukaryotic organelles such as mitochondria also contain some DNA.
  • Many eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, mechanosensation, and thermosensation. Cilia may thus be "viewed as a sensory cellular antennae that coordinates a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation."[12]
  • Eukaryotes can move using motile cilia or flagella. Eukaryotic flagella are less complex than those of prokaryotes.
Structure of a typical animal cell
Structure of a typical plant cell
Table 2: Comparison of structures between animal and plant cells
Typical animal cell Typical plant cell
Organelles

Subcellular components

Illustration depicting major structures inside an eukaryotic animal cell

All cells, whether prokaryotic or eukaryotic, have a membrane that envelops the cell, separates its interior from its environment, regulates what moves in and out (selectively permeable), and maintains the electric potential of the cell. Inside the membrane, a salty cytoplasm takes up most of the cell volume. All cells (except red blood cells which lack a cell nucleus and most organelles to accommodate maximum space for hemoglobin) possess DNA, the hereditary material of genes, and RNA, containing the information necessary to build various proteins such as enzymes, the cell's primary machinery. There are also other kinds of biomolecules in cells. This article lists these primary components of the cell, then briefly describes their function.

Membrane

The cell membrane, or plasma membrane, surrounds the cytoplasm of a cell. In animals, the plasma membrane is the outer boundary of the cell, while in plants and prokaryotes it is usually covered by a cell wall. This membrane serves to separate and protect a cell from its surrounding environment and is made mostly from a double layer of phospholipids, which are amphiphilic (partly hydrophobic and partly hydrophilic). Hence, the layer is called a phospholipid bilayer, or sometimes a fluid mosaic membrane. Embedded within this membrane is a variety of protein molecules that act as channels and pumps that move different molecules into and out of the cell. The membrane is said to be 'semi-permeable', in that it can either let a substance (molecule or ion) pass through freely, pass through to a limited extent or not pass through at all. Cell surface membranes also contain receptor proteins that allow cells to detect external signaling molecules such as hormones.

Cytoskeleton

A fluorescent image of an endothelial cell. Nuclei are stained blue, mitochondria are stained red, and microfilaments are stained green.

The cytoskeleton acts to organize and maintain the cell's shape; anchors organelles in place; helps during endocytosis, the uptake of external materials by a cell, and cytokinesis, the separation of daughter cells after cell division; and moves parts of the cell in processes of growth and mobility. The eukaryotic cytoskeleton is composed of microfilaments, intermediate filaments and microtubules. There are a great number of proteins associated with them, each controlling a cell's structure by directing, bundling, and aligning filaments. The prokaryotic cytoskeleton is less well-studied but is involved in the maintenance of cell shape, polarity and cytokinesis.[13]

Genetic material

Two different kinds of genetic material exist: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Most cells use DNA for their long-term information storage. The biological information contained in an organism is encoded in its DNA sequence. RNA is used for information transport (e.g., mRNA) and enzymatic functions (e.g., ribosomal RNA). Transfer RNA (tRNA) molecules are used to add amino acids during protein translation.

Prokaryotic genetic material is organized in a simple circular DNA molecule (the bacterial chromosome) in the nucleoid region of the cytoplasm. Eukaryotic genetic material is divided into different, linear molecules called chromosomes inside a discrete nucleus, usually with additional genetic material in some organelles like mitochondria and chloroplasts (see endosymbiotic theory).

A human cell has genetic material contained in the cell nucleus (the nuclear genome) and in the mitochondria (the mitochondrial genome). In humans the nuclear genome is divided into 46 linear DNA molecules called chromosomes, including 22 homologous chromosome pairs and a pair of sex chromosomes. The mitochondrial genome is a circular DNA molecule distinct from the nuclear DNA. Although the mitochondrial DNA is very small compared to nuclear chromosomes, it codes for 13 proteins involved in mitochondrial energy production and specific tRNAs.

Foreign genetic material (most commonly DNA) can also be artificially introduced into the cell by a process called transfection. This can be transient, if the DNA is not inserted into the cell's genome, or stable, if it is. Certain viruses also insert their genetic material into the genome.

Organelles

Organelles are parts of the cell which are adapted and/or specialized for carrying out one or more vital functions, analogous to the organs of the human body (such as the heart, lung, and kidney, with each organ performing a different function). Both eukaryotic and prokaryotic cells have organelles, but prokaryotic organelles are generally simpler and are not membrane-bound.

There are several types of organelles in a cell. Some (such as the nucleus and golgi apparatus) are typically solitary, while others (such as mitochondria, chloroplasts, peroxisomes and lysosomes) can be numerous (hundreds to thousands). The cytosol is the gelatinous fluid that fills the cell and surrounds the organelles.

Eukaryotic

Human cancer cells with nuclei (specifically the DNA) stained blue. The central and rightmost cell are in interphase, so the entire nuclei are labeled. The cell on the left is going through mitosis and its DNA has condensed.
  • Cell nucleus: A cell's information center, the cell nucleus is the most conspicuous organelle found in a eukaryotic cell. It houses the cell's chromosomes, and is the place where almost all DNA replication and RNA synthesis (transcription) occur. The nucleus is spherical and separated from the cytoplasm by a double membrane called the nuclear envelope. The nuclear envelope isolates and protects a cell's DNA from various molecules that could accidentally damage its structure or interfere with its processing. During processing, DNA is transcribed, or copied into a special RNA, called messenger RNA (mRNA). This mRNA is then transported out of the nucleus, where it is translated into a specific protein molecule. The nucleolus is a specialized region within the nucleus where ribosome subunits are assembled. In prokaryotes, DNA processing takes place in the cytoplasm.
  • Mitochondria and Chloroplasts: the power generators: Mitochondria are self-replicating organelles that occur in various numbers, shapes, and sizes in the cytoplasm of all eukaryotic cells. Mitochondria play a critical role in generating energy in the eukaryotic cell. Respiration occurs in the cell mitochondria, which generate the cell's energy by oxidative phosphorylation, using oxygen to release energy stored in cellular nutrients (typically pertaining to glucose) to generate ATP. Mitochondria multiply by binary fission, like prokaryotes. Chloroplasts can only be found in plants and algae, and they capture the sun's energy to make ATP.
Diagram of an endomembrane system
  • Endoplasmic reticulum: The endoplasmic reticulum (ER) is a transport network for molecules targeted for certain modifications and specific destinations, as compared to molecules that float freely in the cytoplasm. The ER has two forms: the rough ER, which has ribosomes on its surface that secrete proteins into the ER, and the smooth ER, which lacks ribosomes. The smooth ER plays a role in calcium sequestration and release. (See Endoplasmic reticulum)
  • Golgi apparatus: The primary function of the Golgi apparatus is to process and package the macromolecules such as proteins and lipids that are synthesized by the cell. (See Golgi apparatus)
  • Lysosomes and Peroxisomes: Lysosomes contain digestive enzymes (acid hydrolases). They digest excess or worn-out organelles, food particles, and engulfed viruses or bacteria. Peroxisomes have enzymes that rid the cell of toxic peroxides. The cell could not house these destructive enzymes if they were not contained in a membrane-bound system. (See Lysosome and Peroxisome)
  • Centrosome – the cytoskeleton organiser: The centrosome produces the microtubules of a cell – a key component of the cytoskeleton. It directs the transport through the ER and the Golgi apparatus. Centrosomes are composed of two centrioles, which separate during cell division and help in the formation of the mitotic spindle. A single centrosome is present in the animal cells. They are also found in some fungi and algae cells. (See Centrosome)
  • Vacuoles: Vacuoles store food and waste. Some vacuoles store extra water. They are often described as liquid filled space and are surrounded by a membrane. Some cells, most notably Amoeba, have contractile vacuoles, which can pump water out of the cell if there is too much water. The vacuoles of eukaryotic cells are usually larger in those of plants than animals. (See Vacuole)

Eukaryotic and prokaryotic

  • Ribosomes: The ribosome is a large complex of RNA and protein molecules. They each consist of two subunits, and act as an assembly line where RNA from the nucleus is used to synthesise proteins from amino acids. Ribosomes can be found either floating freely or bound to a membrane (the rough endoplasmatic reticulum in eukaryotes, or the cell membrane in prokaryotes).[14]

Structures outside the cell membrane

Many cells also have structures which exist wholly or partially outside the cell membrane. These structures are notable because they are not protected from the external environment by the impermeable cell membrane. In order to assemble these structures, their components must be carried across the cell membrane by export processes.

Cell wall

Many types of prokaryotic and eukaryotic cells have a cell wall. The cell wall acts to protect the cell mechanically and chemically from its environment, and is an additional layer of protection to the cell membrane. Different types of cell have cell walls made up of different materials; plant cell walls are primarily made up of pectin, fungi cell walls are made up of chitin and bacteria cell walls are made up of peptidoglycan.

Prokaryotic

Capsule

A gelatinous capsule is present in some bacteria outside the cell membrane and cell wall. The capsule may be polysaccharide as in pneumococci, meningococci or polypeptide as Bacillus anthracis or hyaluronic acid as in streptococci. (See Bacterial capsule.) Capsules are not marked by normal staining protocols and can be detected by India ink or Methyl blue; which allows for higher contrast between the cells for observation.[15]: 87 

Flagella

Flagella are organelles for cellular mobility. The bacterial flagellum stretches from cytoplasm through the cell membrane(s) and extrudes through the cell wall. They are long and thick thread-like appendages, protein in nature. Are most commonly found in bacteria cells but are found in animal cells as well.

Fimbriae (pili)

They are short and thin hair-like filaments, formed of protein called pilin (antigenic). Fimbriae are responsible for attachment of bacteria to specific receptors of human cell (adherence). There are special types of pili called (sex pili) involved in conjunction. (See Pilus.)

Growth and metabolism

Between successive cell divisions, cells grow through the functioning of cellular metabolism. Cell metabolism is the process by which individual cells process nutrient molecules. Metabolism has two distinct divisions: catabolism, in which the cell breaks down complex molecules to produce energy and reducing power, and anabolism, in which the cell uses energy and reducing power to construct complex molecules and perform other biological functions. Complex sugars consumed by the organism can be broken down into a less chemically complex sugar molecule called glucose. Once inside the cell, glucose is broken down to make adenosine triphosphate (ATP), a form of energy, through two different pathways.

The first pathway, glycolysis, requires no oxygen and is referred to as anaerobic metabolism. Each reaction produces ATP and NADH, which are used in cellular functions, as well as two pyruvate molecules that derive from the original glucose molecule. In prokaryotes, all energy is produced by glycolysis.

The second pathway, called the Krebs cycle or citric acid cycle, is performed only by eukaryotes and involves further breakdown of the pyruvate produced in glycolysis. It occurs inside the mitochondria and generates much more energy than glycolysis, mostly through oxidative phosphorylation.

Replication

Bacteria divide by binary fission, while eukaryotes divide by mitosis or meiosis.

Cell division involves a single cell (called a mother cell) dividing into two daughter cells. This leads to growth in multicellular organisms (the growth of tissue) and to procreation (vegetative reproduction) in unicellular organisms. Prokaryotic cells divide by binary fission, while eukaryotic cells usually undergo a process of nuclear division, called mitosis, followed by division of the cell, called cytokinesis. A diploid cell may also undergo meiosis to produce haploid cells, usually four. Haploid cells serve as gametes in multicellular organisms, fusing to form new diploid cells.

DNA replication, or the process of duplicating a cell's genome, always happens when a cell divides through mitosis or binary fission. This occurs during the S phase of the cell cycle.

In meiosis, the DNA is replicated only once, while the cell divides twice. DNA replication only occurs before meiosis I. DNA replication does not occur when the cells divide the second time, in meiosis II.[16] Replication, like all cellular activities, requires specialized proteins for carrying out the job.

Protein synthesis

An overview of protein synthesis.
Within the nucleus of the cell (light blue), genes (DNA, dark blue) are transcribed into RNA. This RNA is then subject to post-transcriptional modification and control, resulting in a mature mRNA (red) that is then transported out of the nucleus and into the cytoplasm (peach), where it undergoes translation into a protein. mRNA is translated by ribosomes (purple) that match the three-base codons of the mRNA to the three-base anti-codons of the appropriate tRNA. Newly synthesized proteins (black) are often further modified, such as by binding to an effector molecule (orange), to become fully active.

Cells are capable of synthesizing new proteins, which are essential for the modulation and maintenance of cellular activities. This process involves the formation of new protein molecules from amino acid building blocks based on information encoded in DNA/RNA. Protein synthesis generally consists of two major steps: transcription and translation.

Transcription is the process where genetic information in DNA is used to produce a complementary RNA strand. This RNA strand is then processed to give messenger RNA (mRNA), which is free to migrate through the cell. mRNA molecules bind to protein-RNA complexes called ribosomes located in the cytosol, where they are translated into polypeptide sequences. The ribosome mediates the formation of a polypeptide sequence based on the mRNA sequence. The mRNA sequence directly relates to the polypeptide sequence by binding to transfer RNA (tRNA) adapter molecules in binding pockets within the ribosome. The new polypeptide then folds into a functional three-dimensional protein molecule.

Movement or motility

Cells can move during many processes: such as wound healing, the immune response and cancer metastasis. For wound healing to occur, white blood cells and cells that ingest bacteria move to the wound site to kill the microorganisms that cause infection.
At the same time fibroblasts (connective tissue cells) move there to remodel damaged structures. In the case of tumor development, cells from a primary tumor move away and spread to other parts of the body. Cell motility involves many receptors, crosslinking, bundling, binding, adhesion, motor and other proteins.[17] The process is divided into three steps – protrusion of the leading edge of the cell, adhesion of the leading edge and de-adhesion at the cell body and rear, and cytoskeletal contraction to pull the cell forward. Each step is driven by physical forces generated by unique segments of the cytoskeleton.[18][19]

Origins

The origin of cells has to do with the origin of life, which began the history of life on Earth.

Origin of the first cell

Stromatolites are left behind by cyanobacteria, also called blue-green algae. They are the oldest known fossils of life on Earth. This one-billion-year-old fossil is from Glacier National Park in the United States.

There are several theories about the origin of small molecules that led to life on the early Earth. They may have been carried to Earth on meteorites (see Murchison meteorite), created at deep-sea vents, or synthesized by lightning in a reducing atmosphere (see Miller–Urey experiment). There is little experimental data defining what the first self-replicating forms were. RNA is thought to be the earliest self-replicating molecule, as it is capable of both storing genetic information and catalyzing chemical reactions (see RNA world hypothesis), but some other entity with the potential to self-replicate could have preceded RNA, such as clay or peptide nucleic acid.[20]

Cells emerged at least 3.5 billion years ago.[5][6][7] The current belief is that these cells were heterotrophs. The early cell membranes were probably more simple and permeable than modern ones, with only a single fatty acid chain per lipid. Lipids are known to spontaneously form bilayered vesicles in water, and could have preceded RNA, but the first cell membranes could also have been produced by catalytic RNA, or even have required structural proteins before they could form.[21]

Origin of eukaryotic cells

The eukaryotic cell seems to have evolved from a symbiotic community of prokaryotic cells. DNA-bearing organelles like the mitochondria and the chloroplasts are descended from ancient symbiotic oxygen-breathing proteobacteria and cyanobacteria, respectively, which were endosymbiosed by an ancestral archaean prokaryote.

There is still considerable debate about whether organelles like the hydrogenosome predated the origin of mitochondria, or vice versa: see the hydrogen hypothesis for the origin of eukaryotic cells.

Sex, as the stereotyped choreography of meiosis and syngamy that persists in nearly all extant eukaryotes, may have played a role in the transition from prokaryotes to eukaryotes. One view, on the origin of sex in eukaryotic cells, is that eukaryotic sex evolved from a prokaryotic sexual process termed transformation. According to this view, bacterial transformation is an adaptation for repairing DNA damages that arise during stressful conditions, and this role has been maintained in meiosis, where recombinational DNA repair is promoted. Thus the adaptive benefit of prokaryotic sex, recombinational repair, was maintained through the evolutionary transition from prokaryotes to single-celled eukaryotes.[22][23] This view is also presented in the Wikipedia articles Transformation (genetics), Evolution of sexual reproduction and Sex.

In another view, an 'origin of sex as vaccination' theory suggests that the eukaryote genome accreted from prokaryan parasite genomes in numerous rounds of lateral gene transfer. Sex-as-syngamy (fusion sex) arose when infected hosts began swapping nuclearized genomes containing co-evolved, vertically transmitted symbionts that conveyed protection against horizontal infection by more virulent symbionts.[24]

History of research

See also

References

  1. ^ Cell Movements and the Shaping of the Vertebrate Body in Chapter 21 of Molecular Biology of the Cell fourth edition, edited by Bruce Alberts (2002) published by Garland Science.
    The Alberts text discusses how the "cellular building blocks" move to shape developing embryos. It is also common to describe small molecules such as amino acids as "molecular building blocks".
  2. ^ Lodish (2007). Molecular Cell Biology,6e. W.H.Freeman and Company. ISBN 0-7167-7601-4.
  3. ^ Campbell, Neil A. (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 0-13-250882-6. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ Maton, Anthea (1997). Cells Building Blocks of Life. New Jersey: Prentice Hall. ISBN 0-13-423476-6. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ a b Schopf, JW, Kudryavtsev, AB, Czaja, AD, and Tripathi, AB. (2007). Evidence of Archean life: Stromatolites and microfossils. Precambrian Research 158:141-155.
  6. ^ a b Schopf, JW (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci 29;361(1470):869-85.
  7. ^ a b Peter Hamilton Raven; George Brooks Johnson (2002). Biology. McGraw-Hill Education. p. 68. ISBN 978-0-07-112261-0. Retrieved 7 July 2013.
  8. ^ "Cell". Online Etymology Dictionary. Retrieved 31 December 2012.
  9. ^ a b "... I could exceedingly plainly perceive it to be all perforated and porous, much like a Honey-comb, but that the pores of it were not regular [..] these pores, or cells, [..] were indeed the first microscopical pores I ever saw, and perhaps, that were ever seen, for I had not met with any Writer or Person, that had made any mention of them before this. . ." – Hooke describing his observations on a thin slice of cork. Robert Hooke
  10. ^ a b Campbell Biology—Concepts and Connections. Pearson Education. 2009. p. 320.
  11. ^ European Bioinformatics Institute, Karyn's Genomes: Borrelia burgdorferi, part of 2can on the EBI-EMBL database. Retrieved 5 August 2012
  12. ^ Satir, Peter; Christensen, ST (2008-03-26). "Structure and function of mammalian cilia". Histochemistry and Cell Biology. 129 (6). Springer Berlin / Heidelberg: 687–693. doi:10.1007/s00418-008-0416-9. PMC 2386530. PMID 18365235. 1432-119X. Retrieved 2009-09-12. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  13. ^ Michie K, Löwe J (2006). "Dynamic filaments of the bacterial cytoskeleton". Annu Rev Biochem. 75: 467–92. doi:10.1146/annurev.biochem.75.103004.142452. PMID 16756499.
  14. ^ Ménétret JF, Schaletzky J, Clemons WM, CW; Akey; et al. (2007). "Ribosome binding of a single copy of the SecY complex: implications for protein translocation". Mol. Cell. 28 (6): 1083–92. doi:10.1016/j.molcel.2007.10.034. PMID 18158904. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ Prokaryotes. Newnes. Apr 11, 1996. ISBN 9780080984735.{{cite book}}: CS1 maint: year (link)
  16. ^ Campbell Biology—Concepts and Connections. Pearson Education. 2009. p. 138.
  17. ^ Revathi Ananthakrishnan1 *, Allen Ehrlicher2 ✉. "The Forces Behind Cell Movement". Biolsci.org. Retrieved 2009-04-17.{{cite web}}: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  18. ^ Alberts B, Johnson A, Lewis J. et al. Molecular Biology of the Cell, 4e. Garland Science. 2002
  19. ^ Ananthakrishnan R, Ehrlicher A. The Forces Behind Cell Movement. Int J Biol Sci 2007; 3:303–317. http://www.biolsci.org/v03p0303.htm
  20. ^ Orgel LE (1998). "The origin of life--a review of facts and speculations". Trends Biochem Sci. 23 (12): 491–5. doi:10.1016/S0968-0004(98)01300-0. PMID 9868373.
  21. ^ Griffiths G (2007). "Cell evolution and the problem of membrane topology". Nature reviews. Molecular cell biology. 8 (12): 1018–24. doi:10.1038/nrm2287. PMID 17971839. {{cite journal}}: Unknown parameter |month= ignored (help)
  22. ^ Bernstein H, Bernstein C. (2010) Evolutionary Origin of Recombination during Meiosis. BioScience 60(7):498-505. doi: http://dx.doi.org/10.1525/bio.2010.60.7.5
  23. ^ Bernstein H, Bernstein C, Michod RE (2012). DNA repair as the primary adaptive function of sex in bacteria and eukaryotes. Chapter 1: pp.1-49 in: DNA Repair: New Research, Sakura Kimura and Sora Shimizu editors. Nova Sci. Publ., Hauppauge, N.Y. ISBN 978-1-62100-808-8 https://www.novapublishers.com/catalog/product_info.php?products_id=31918
  24. ^ Sterrer W (2002). "On the origin of sex as vaccination". Journal of Theoretical Biology. 216 (4): 387–396. doi:10.1006/jtbi.2002.3008. PMID 12151256.

Textbooks

Template:Link FA Template:Link FA Template:Link FA Template:Link FA Template:Link FA