Draft:Soft robotics: Difference between revisions
Line 133: | Line 133: | ||
=== International Events === |
=== International Events === |
||
* 2015 [http://robotics.oregonstate.edu/icra2015softrobotics Soft Robotics: Actuation, Integration, and Applications - Blending research perspectives for a leap forward in soft robotics technology], 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle WA, May 2014 |
* 2015 [http://robotics.oregonstate.edu/icra2015softrobotics Soft Robotics: Actuation, Integration, and Applications - Blending research perspectives for a leap forward in soft robotics technology], 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle WA, May 2014 |
||
* 2015 [http://www.robosoftca.eu/information/events/soft-robotics-week], First Soft Robotics Week, Livorno, April 13-17, 2015 |
|||
* 2014 [http://www.robosoftca.eu/events/rss2014-workshop Workshop on Advances on Soft Robotics], 2014 Robotics Science an Systems (RSS) Conference, Berkeley, CA, July 13, 2014 |
* 2014 [http://www.robosoftca.eu/events/rss2014-workshop Workshop on Advances on Soft Robotics], 2014 Robotics Science an Systems (RSS) Conference, Berkeley, CA, July 13, 2014 |
||
* 2013 [http://www.softrobot2013.ethz.ch International Workshop on Soft Robotics and Morphological Computation], Monte Verità, July 14-19, 2013 |
* 2013 [http://www.softrobot2013.ethz.ch International Workshop on Soft Robotics and Morphological Computation], Monte Verità, July 14-19, 2013 |
Revision as of 14:24, 12 May 2015
This is a draft article. It is a work in progress open to editing by anyone. Please ensure core content policies are met before publishing it as a live Wikipedia article at Soft robotics. Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL Last edited by 193.205.81.1 (talk | contribs) 9 years ago. (Update)
Finished drafting? or |
NOTE: I have removed extensive copyright violations, while leaving the references from the deleted paragraphs in the hope that they may help in rebuilding the article. Unless otherwise stated, copied paragraphs came from http://journal.frontiersin.org/article/10.3389/fbioe.2014.00003/full.
Before working on this draft please read:
|
Soft Robotics is a subfield of robotics that deals with robots built out of soft and deformable material like silicone, plastic, fabric, rubber, or compliant mechanical parts like springs.
Soft robots can actively interact with the environment and can undergo “large” deformations relying on inherent or structural compliance respectively due to the softness or the morphological features of its body.
Aspects of Soft Robots
Soft robots are often, but not necessarily, bio-inspired. They are known to have a number of advantages over classical robotic devices based on traditional robotic technologies. Soft and deformable structures are crucial in systems that deal with uncertain and dynamic tasks and environments, e.g. grasping and manipulation of unknown objects, locomotion in rough terrain, and physical contact with living cells and human bodies.[3][4] JamBots[5][6][7][8][9][10].
Examples of Soft Robots
Here is a list of examples of soft robots.
- Soft under-actuated fish robots developed in the Mechanical Engineering Department at MIT [2]
- Octopus robot developed in the EU project OCTOPUS
- Stiffness controllable flexible and learn-able manipulator for surgical operations STIFF-FLOP
- Soft caterpillar inspired robot from Tufts University [3]
- Soft starfish inspired robot developed by Robert Shepherd (Cornell University), see [11]
- Untethered quadruped soft robot developed by Michael Tolley (UC San Diego) et al., see [2]
- SMART/MIT soft batoids and sensors [4]
- Roboy - a tendon driven robot developed by the Artificial Intelligence Laboratory of the University of Zurich
- JamBot - locomotion based on granular jamming
- GoQBot
- CFD-OctoProp
- PoseiDRONE
- ECCE robot
- FILOSE
Components for Soft Robots
In the context of soft robotics a whole range of materials are used like silicone, paper, wood, but also metal (e.g. in springs). In addition, so-called smart materials are playing an important, especially, for actuation and sensing. The main components are actuators, sensors, and structural components, all of which can be to a certain extent soft. In addition, as opposed to classical robot design, in soft robots the concept of morphological computation is considered, where the control of a soft robot is implemented directly in its physical body (morphology) instead of a software running on a CPU.
Soft Actuators
Shape Memory Alloys (SMAs)
Shape Memory Alloys are metal alloys that can deformate and then recover their original shape by heating [12]. SMAs are used in soft robots because of their flexibility, the large force-weight ratio, a limited volume, inherent sensing capability and noise-free operation. The low efficiency, high hysteresis and non-linearity are the major drawbacks [13][14].
Shape Memory Polymers (SMPs)
SMPs are smart polymers that, as SMA, are capable of undergoing a certain strain and then recover the original shape when heated. Differently from SMA, they are used in several fields of applications because of their flexibility, biocompatibility and wide scope of modifications. A comprehensive review can be found in [15].
Electroactive polymers
Electro Active Polymers (EAPs) are based on polymeric matrixes that can change their shape and size when undergoing to an electric stimulus. They are a promising class of smart polymers for biomimetic and biomedical soft robots because they have power densities exceeding those of biological muscle, are readily scalable and free-form fabricable. Currently they have limited application because the required electric field is very high (in the case of electronic EAP), or they have a slow response and low lifetime (for the ionic EAP).
Flexible fluidic actuator
These actuators use the fluid pressure force to generate a traction force or a bending movement. They are based on an expansion chamber defined by an inner wall of an expandable girdle connected to at least two anchoring points. The expansion chamber can be pressurized acquiring a minimum or a maximum volume. They are finding several applications in the soft robotics field [17]
Cable-driven actuation
Actuators based on cables have the benefit of providing a distributed and continuous action during the movement. They have low inertia, are fast, have low weight and volume and guarantee a fast responce with long range transmission of force and power. The control is simplified, but friction losses along the robot due to the cables may reduce the controllability of the system itself [18].
Semi-active actuators
- < copied paragraph removed >
Variable Impedance Actuators
- < paragraph removed, copied from http://www.eucognition.org/eucog-wiki/Compliant_robots >
Soft Sensors
- < paragraph removed, largely copied from https://www.ri.cmu.edu/pub_files/2011/10/Park_Sensors11.pdf >
[23][24][25][26][27][28][29][30].
Soft Structures
By employing hybrid structural approaches, such as tensegrity structures, Robots can also be soft at the "structural" level, even if they use a mix of soft and rigid component elements. A Tensegrity Robot is structurally integrated through its continuous elastic tensile network, and exhibits many of the properties commonly associated with soft robots, such as passive compliance, robust distribution of contact forces, highly deformable shape, and distributed parallel actuation approaches. Likewise, they have the same challenges in sensing, modeling and control due to their passive compliance, oscillatory response, and non-linear structural dynamics. Tensegrity robots have been shown to benefit from many of the same sensing, modeling, and control approaches as other soft robots, such as the use of neuroscience inspired Central Pattern Generators distributed emergent controllers[32]. One advantage that tensegrity robots present relative to purely soft robots is the opportunity to integrate existing sensors and actuators into the rods, yet still achieve a structurally compliant system.
Tensegrity Robots have been developed in hardware and simulation by a growing number of research labs over the last decade, and have been proposed for a wide range of applications, including bio-mimicry[33] and space exploration.[34] Recently NASA released the beta version of an open source NASA Tensegrity Robotics Toolkit (NTRT), which is a physics based simulation engine for tensegrity robots. Due to hardware validation experiments, the elastic cables simulated in the NTRT have been shown to be accurate enough to model the dynamics of real tensegrity robots.[31] During the winter of 2014, it is expected that an update will be released which will further update the elastic cable models to include accurate contact dynamics. These tools to model soft compliant cables at an engineering level of accuracy are notably lacking from other robotic simulation environments and are being used by a wide range of researchers.
Modeling Soft Robots
- < paragraph deleted - two sentences match to http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6827980 >
Control Architectures
In general, soft robotic structures are hard to control. The reason is that soft bodies are highly complex and, therefore, hard to model. Typical properties are strong nonlinearities, a high-dimensional (potentially infinite) state space, bifurcation behavior, underactuation, and delayed communication - all of which are difficult to handle individually and represents a serious challenge when combined. Due to this fact a lot of times soft robots are not actively controlled or are very imprecisely controlled with a simple feedforward controller.
A concept often mentioned in the context of soft robotics is Morphological Computation, which his based on the observation in Nature that the physical body (i.e. the morphology) of biological systems seem to contribute to computational aspects. The concept has repeatedly been applied in robot designs, especially, with soft bodies.[39] The general approach is to cleverly design (soft) bodies, such that they can take over part of the control of the robot. For example, in locomotion a spring in a leg enables the robot to cope with uneven ground as this external perturbations can be absorbed by the springs without the need of an external controller.
Despite the number of successful designs [39] there exist very little theoretical work to establish a mathematical framework to describe the computational power of (soft) bodies and to use it to design a control approach for soft robots. Füchslin et al. [40] discussed how morphological computation in the context of control can look like. Some initial work on mathematical frameworks has been done by Hauser et al.[41][42] There also exist a number work that shows that theses theoretical models can be applied to real robotics platforms under real world conditions. For example, Nakjima et al. [43] demonstrated the computational power of an octopus-inspired soft silicone arm and how it can be exploited as a computational resources. Furthermore, they demonstrated how the same setup can be used to control the arm for simply movements. Zhao et al. [44] used the same theoretical models of Hauser et al. to control a quadruped robot.
Another approach to rethink the paradigm approach to the control of robots and soft robots, and their modeling, from the point of view of morphological computation is being pursued in a series of theoretical papers, [45] [46] [47][48][49], by Fabio Bonsignorio a follower of the University of Zurich AILab approach to embodied intelligence initiated by Rolf Pfeifer. When considering soft robots it is intuitive that the compliant morphology of the robot makes easier the control. The exploitation of natural dynamics has led to passive walkers , [50] [51], which in terms of cheap computational burden and energy efficiency outperform fully actuated comparable sytems, . Yet a set of mathematical models and control strategies allowing the exploitation of underactuation and soft structures is still in its infancy. Bonsignorio, leveraging on work by Pfeifer himself and collaborators, Touchette and Lloyd [52], Gregory Chirijkian, [53], Ralph Der [54] , Nihat Ay [55], Daniel Polani [56], and others [57][58][59][60] [61] , sets the problem of robot control within a novel paradigm framework integrating information theory , self-organization, dynamical systems and theoretical mechanics, which makes very natural to understand the issues of soft robot control. This theoretical framework , although promising, is still not widely known, needs futher work, in particular to merge with the approaches proposed by Hauser, Fuechslin, Pfeifer and others, and still lacks a thorough experimental validation.
Scientific Community
Although people have been using soft material for robots for a long time, only recently an international community has been formed. For example, since October 2012 exists an IEEE RAS Technical Committee on Soft Robotics, which coordinates the international community around this field of research. In 2013 the International Journal on Soft Robotics was funded. It publishes quarterly results from the field. In October 2013 started RoboSoft –
International Journals
International Events
- 2015 Soft Robotics: Actuation, Integration, and Applications - Blending research perspectives for a leap forward in soft robotics technology, 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle WA, May 2014
- 2015 [5], First Soft Robotics Week, Livorno, April 13-17, 2015
- 2014 Workshop on Advances on Soft Robotics, 2014 Robotics Science an Systems (RSS) Conference, Berkeley, CA, July 13, 2014
- 2013 International Workshop on Soft Robotics and Morphological Computation, Monte Verità, July 14-19, 2013
- 2012 Summer School on Soft Robotics, Zurich, June 18-22, 2012
Projects
- EU Project OCTOPUS, coordinated by Prof. Cecilia Laschi, BioRobotics Institute, Scuola Superiore Sant'Anna, Italy
- EU Project LOCOMORPH, coordinated by Prof. Rolf Pfeifer, Artificial Intelligence Laboratory, University of Zurich, Switzerland
- EU Project ECCE, coordinated by Prof Owen Holland, Department of Informatics, University of Sussex, UK
- EU Project Myorobotics, coordinated by Prof. Alois Knoll, Robotics and Embedded Systems, Technical University of Munich, Germany
- EU Project STIFF-FLOP, coordinated by Prof. Kaspar Althoefer, Centre for Robotics Research, King's College of London, UK
- IGERT, coordinated by Prof. Barry Trimmer, Neuromechanics and Biomimetic Devices Laboratory, Tufts University, Boston, USA
- EU ERC Grant Project SPEAR, coordinated by Prof. Bram Vanderborght, Robotics and Multibody Mechanics Group, Vrije Universiteit Brussel, Belgium
Education
Soft robotics and morphological computation are central topics in the ShanghAI Lectures The ShanghAI Lectures initiated by Prof. Rolf Pfeifer and currently coordinated by Prof. Fabio Bonsignorio.
- < paragraph removed, copied from http://shanghailectures.org/ >
Educational and Scientific Tools in Soft Robotics
There are a number of educational tools for soft robotics.
- EmbedIT
- LocoKit
- Myorobotics
- Cubebot (link is missing)
- SoftRoboticsToolkit developed by Harvard Biodesign Lab
- VoxCAD – a cross-platform open source voxel modeling and analyzing software
Fields of Application
Medicine
- STIFF-FLOP is a project to develop tools in the context of minimally invasive surgery to go through narrow openings and manipulate soft organs that can move, deform, or change stiffness.
- Protheses
Training and Therapy
- Allegro is a force-controlled soft robotic training partner for dynamic resistance training, rehabilitation and measurement.
Marine robotics
Exoskeletons
Human Robot Interaction
- Probo is a robot that is developed as research platform to study cognitive human-robot interaction (cHRI) with a special focus on children.
References
- ^ El Daou, Hadi; Salumäe, Taavi; Chambers, Lily D.; Megill, William M.; Kruusmaa, Maarja (2014). "Modelling of a biologically inspired robotic fish driven by compliant parts". Bioinspiration & BiomimeticsEmail alert RSS feed. 9 (1). doi:doi:10.1088/1748-3182/9/1/016010.
{{cite journal}}
: Check|doi=
value (help) - ^ a b Tolley, Michael T.; Shepherd, Robert F.; Mosadegh, Bobak; Galloway, Kevin C.; Wehner, Michael; Karpelson, Michael; Wood, Robert J.; Whitesides, George M. (2014). "A Resilient, Untethered Soft Robot". Soft Robotics.
- ^ Morin, S. A.; Shepherd, R. F.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. (16 August 2012). "Camouflage and Display for Soft Machines". Science. 337 (6096): 828–832. doi:10.1126/science.1222149.
- ^ Martinez, Ramses V.; Branch, Jamie L.; Fish, Carina R.; Jin, Lihua; Shepherd, Robert F.; Nunes, Rui M. D.; Suo, Zhigang; Whitesides, George M. (11 January 2013). "Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers". Advanced Materials. 25 (2): 205–212. doi:10.1002/adma.201203002.
- ^ Steltz E., Mozeika A., Rembisz J., Corson N., and Jaeger H. M., “Jamming as an enabling technology for soft robotics”, in Proceedings of the SPIE: Electroactive Polymer Actuators and Devices (EAPAD), 7642, pp. 764225-764229, 2010. DOI: 10.1117/12.853182
- ^ Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M. R.; Lipson, H.; Jaeger, H. M. (25 October 2010). "Universal robotic gripper based on the jamming of granular material". Proceedings of the National Academy of Sciences. 107 (44): 18809–18814. doi:10.1073/pnas.1003250107.
- ^ Cheng N. G., Lobovsky M. B., Keating S. J., Setapen A. M., Gero K. I., Hosoi A. E., Iagnemma K. D., “Design and Analysis of a Robust, Low-cost, Highly Articulated manipulator enabled by jamming of granular media”, IEEE Int. Conf. on Robotics and Automation, pp. 4328-4333, 2012. DOI: 10.1109/ICRA.2012.6225373
- ^ Otake, Mihoko; Kagami, Yoshiharu; Inaba, Masayuki; Inoue, Hirochika (August 2002). "Motion design of a starfish-shaped gel robot made of electro-active polymer gel". Robotics and Autonomous Systems. 40 (2–3): 185–191. doi:10.1016/S0921-8890(02)00243-9.
- ^ Nawroth, Janna C; Lee, Hyungsuk; Feinberg, Adam W; Ripplinger, Crystal M; McCain, Megan L; Grosberg, Anna; Dabiri, John O; Parker, Kevin Kit (22 July 2012). "A tissue-engineered jellyfish with biomimetic propulsion". Nature Biotechnology. 30 (8): 792–797. doi:10.1038/nbt.2269.
- ^ Seok, Sangok; Onal, Cagdas Denizel; Cho, Kyu-Jin; Wood, Robert J.; Rus, Daniela; Kim, Sangbae (October 2013). "Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators". IEEE/ASME Transactions on Mechatronics. 18 (5): 1485–1497. doi:10.1109/TMECH.2012.2204070.
- ^ Shepherd; et al. "Multigait soft robot". Retrieved 27 July 2014.
{{cite web}}
: Explicit use of et al. in:|last1=
(help) - ^ Kennedy, edited by Hiroyasu Funakubo ; translated from the Japanese by J.B. (1987). Shape memory alloys. New York: Gordon and Breach Science Publishers. ISBN 2881241360.
{{cite book}}
:|first1=
has generic name (help)CS1 maint: multiple names: authors list (link) - ^ Cianchetti M., “Fundamentals on the Use of Shape Memory Alloys in Soft Robotics, in Interdisciplinary Mechatronics: Engineering Science and Research Development”, edited by M. K. Habib and J. Paulo Davim, pp. 227-254, Wiley-ISTE, 2013. DOI: 10.1002/9781118577516.ch10
- ^ Cianchetti, Matteo; Licofonte, Alessia; Follador, Maurizio; Rogai, Francesco; Laschi, Cecilia (9 July 2014). "Bioinspired Soft Actuation System Using Shape Memory Alloys". Actuators. 3 (3): 226–244. doi:10.3390/act3030226.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Ratna, Debdatta; Karger-Kocsis, J. (17 October 2007). "Recent advances in shape memory polymers and composites: a review". Journal of Materials Science. 43 (1): 254–269. doi:10.1007/s10853-007-2176-7.
- ^ Mirfakhrai, Tissaphern; Madden, John D.W.; Baughman, Ray H. (April 2007). "Polymer artificial muscles". Materials Today. 10 (4): 30–38. doi:10.1016/S1369-7021(07)70048-2.
- ^ De Greef, Aline; Lambert, Pierre; Delchambre, Alain (October 2009). "Towards flexible medical instruments: Review of flexible fluidic actuators". Precision Engineering. 33 (4): 311–321. doi:10.1016/j.precisioneng.2008.10.004.
- ^ Calisti M., Arienti A., Giannaccini M. E., Follador M., Giorelli M., Cianchetti M., Mazzolai B., Laschi C., and Dario P., “Study and fabrication of bioinspired Octopus arm mockups tested on a multipurpose platform”, IEEE Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 461-466, 2010. DOI: 10.1109/BIOROB.2010.5625959
- ^ Cheng N. G., Ishigami G., Hawthorne S., Hao C., Hansen M., Telleria M., Playter R., and Iagnemma K., “Design and Analysis of a Soft Mobile Robot Composed of Multiple Thermally Activated Joints Driven by a Single Actuator”, IEEE Int. Conf. on Robotics and Automation, pp. 5207‐5212, 2010. DOI: 10.1109/ROBOT.2010.5509247
- ^ Yalcintas, Melek; Dai, Heming (1 October 1999). "Magnetorheological and electrorheological materials in adaptive structures and their performance comparison". Smart Materials and Structures. 8 (5): 560–573. doi:10.1088/0964-1726/8/5/306.
- ^ Liu, Andrea J.; Nagel, Sidney R. (5 November 1998). Nature. 396 (6706): 21–22. doi:10.1038/23819.
{{cite journal}}
: Missing or empty|title=
(help) - ^ Vanderborght, B.; Albu-Schaeffer, A.; Bicchi, A.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.; Eiberger, O.; Friedl, W.; Ganesh, G.; Garabini, M.; Grebenstein, M.; Grioli, G.; Haddadin, S.; Hoppner, H.; Jafari, A.; Laffranchi, M.; Lefeber, D.; Petit, F.; Stramigioli, S.; Tsagarakis, N.; Van Damme, M.; Van Ham, R.; Visser, L.C.; Wolf, S. (December 2013). "Variable impedance actuators: A review". Robotics and Autonomous Systems. 61 (12): 1601–1614. doi:10.1016/j.robot.2013.06.009.
- ^ Yong-Lae Park; Seok Chang Ryu; Black, R.J.; Chau, K.K.; Moslehi, B.; Cutkosky, M.R. (December 2009). "Exoskeletal Force-Sensing End-Effectors With Embedded Optical Fiber-Bragg-Grating Sensors". IEEE Transactions on Robotics. 25 (6): 1319–1331. doi:10.1109/TRO.2009.2032965.
- ^ Yamada D., Maeno T., and Yamada Y., “Artificial finger skin having ridges and distributed tactile sensors used for grasp force control”, IEEE Int. Conf. on Intelligent Robots and Systems, pp. 686-691, vol.2, 2001. DOI: 10.1109/IROS.2001.976249
- ^ Kirchner, Nathan; Hordern, Daniel; Liu, Dikai; Dissanayake, Gamini (November 2008). "Capacitive sensor for object ranging and material type identification". Sensors and Actuators A: Physical. 148 (1): 96–104. doi:10.1016/j.sna.2008.07.027.
- ^ Ulmen J. and Cutkosky M., “A robust, low-cost and low-noise artficial skin for human-friendly robots”, Proc. IEEE Int. Conf. Rob. Autom., Anchorage, AK, pp. 4836-4841, 2010. DOI: 10.1109/ROBOT.2010.5509295
- ^ Ventrelli L., Beccai L., Mattoli V., Menciassi A., and Dario P., “Development of a stretchable skin-like tactile sensor based on polymer composites”, Proc. IEEE Int. Conf. Rob. Biomimetics, Gui-lin, China, pp. 123-128, 2009. DOI: 10.1109/ROBIO.2009.5420644
- ^ Cheng, M.-Y.; Tsao, C.-M.; Lai, Y.-Z.; Yang, Y.-J. (April 2011). "The development of a highly twistable tactile sensing array with stretchable helical electrodes". Sensors and Actuators A: Physical. 166 (2): 226–233. doi:10.1016/j.sna.2009.12.009.
- ^ Yong-Lae Park; Bor-Rong Chen; Wood, R. J. (August 2012). "Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors". IEEE Sensors Journal. 12 (8): 2711–2718. doi:10.1109/JSEN.2012.2200790.
- ^ Jung, Kwangmok; Kim, Kwang J.; Choi, Hyouk Ryeol (May 2008). "A self-sensing dielectric elastomer actuator". Sensors and Actuators A: Physical. 143 (2): 343–351. doi:10.1016/j.sna.2007.10.076.
- ^ a b Ken Caluwaerts, Jérémie Despraz, Atil Isçen, Andrew P. Sabelhaus, Jonathan Bruce, Benjamin Schrauwen, and Vytas SunSpiral, “Design and Control of Compliant Tensegrity Robots through Simulation and Hardware Validation,” Journal of the Royal Society Interface, Vol. 11, No 98. September 6, 2014; doi:10.1098/rsif.2014.0520 1742-5662
- ^ a b Brian Tietz, Ross Carnahan, Richard Bachmann, Roger Quinn, and Vytas SunSpiral, “Tetraspine: Robust Terrain Handling on a Tensegrity Robot Using Central Pattern Generators,” In Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2013), Wollongong, Australia, July 2013.
- ^ Brian T. Mirletz, In-Won Park, Thomas E. Flemons, Adrian K. Agogino, Roger D. Quinn, and Vytas SunSpiral, “Design and Control of Modular Spine-Like Tensegrity Structures”, in Proceedings of The 6th World Conference of the International Association for Structural Control and Monitoring (6WCSCM), Barcelona, Spain, July 2014.
- ^ Vytas SunSpiral, George Gorospe, Jonathan Bruce, Atil Iscen, George Korbel, Sophie Milam, Adrian Agogino, David Atkinson, “Tensegrity Based Probes for Planetary Exploration: Entry, Descent and Landing (EDL) and Surface Mobility Analysis,” in Proceedings of 10th International Planetary Probe Workshop, San Jose, California, June 2013.
- ^ Webster III, R. J; Jones, B. A. (2010). "Design and kinematic modeling of constant curvature continuum robots: a review". Int. J. Robot. Res. 29: 1661–1683.
- ^ Chirikjian, G. S. (1995). "Hyper-redundant manipulator dynamics: A continuum approximation". J. Adv. Robot. 9: 217–243.
- ^ Yekutieli, Y.; Sagiv-Zohar, R.; Aharonov, R.; Engel, Y.; Hochner, B.; Flash, T. (2005). "Dynamic model of the octopus arm. I. biomechanics of the octopus reaching movement". J. Neurophysiol. 94: 1443–1458.
- ^ Renda, Federico; Giorelli, M.; Calisti, M.; Cianchetti, M.; Laschi, C. "Dynamic Model of a Multibending Soft Robot Arm Driven by Cables". Robotics, IEEE Transactions on. doi:10.1109/TRO.2014.2325992.
- ^ a b Pfeifer, Rolf; Bongard, Josh (2006). How the Body Shapes the Way We Think. MIT Press. p. 424. ISBN 9780262162395. Cite error: The named reference "Rolf_BodyShapesWeThink" was defined multiple times with different content (see the help page).
- ^ Füchslin, Rudolf M.; Dzyakanchuk, Andrej; Flumini, Dandolo; Hauser, Helmut; Hunt, Kenneth J.; Luchsinger, Rolf; Reller, Benedikt; Scheidegger, Stephan; Walker, Richard (2013). "Morphological computation and morphological control: steps toward a formal theory and applications". Artificial Life. 19: 9–34. doi:10.1162/ARTL\_a\_00079.
- ^ Hauser, Helmut; Ijspeert, Auke J.; Füchslin, Rudolf M.; Pfeifer, Rolf; Maass, Wolfgang. "Towards a theoretical foundation for morphological computation with compliant bodies". Biological Cybernetics. 105: 1–19. doi:10.1007/s00422-012-0471-0.
- ^ Hauser, Helmut; Ijspeert, Auke J.; Füchslin, Rudolf M.; Pfeifer, Rolf; Maass, Wolfgang. "The role of feedback in morphological computation with compliant bodies". Biological Cybernetics. 106: 595–613. doi:10.1007/s00422-012-0471-0.
- ^ Nakajima, Kohei; Li, Tao; Hauser, Helmut; Pfeifer, Rolf (2014). "Exploiting short−term memory in soft body dynamics as a computational resource". Journal of the Royal Society Interface.
- ^ Zhao, Qian; Nakajima, Kohei; Sumioka, Hidenobu; Hauser, Helmut; Pfeifer, Rolf (2013). "Spine Dynamics As a Computational Resource in Spine-Driven Quadruped Locomotion". IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
- ^ Bonsignorio, Fabio (2013). "Quantifying the evolutionary self-structuring of embodied cognitive networks". Artificial Life. 19 (2): 267–289. doi:10.1162/ARTL_a_00109.
- ^ Bonsignorio, Fabio (2007). "Preliminary considerations for a quantitative theory of networked embodied intelligence". 50 Years of AI, Festschrift.
- ^ Bonsignorio, Fabio (2010). "On the stochastic stability and observability of controlled serial kinematic chains". ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ESDA2010.
- ^ Bonsignorio, Fabio (2009). "Steps to a cyber-physical model of networked embodied anticipatory behavior". Proceedings of ABiALS 2008.
- ^ Bonsignorio, Fabio (2013). "The new science of physical cognitive systems". SAPERE, Studies in Applied Philosophy, Epistemology and Rational Ethics.
- ^ Garcia, M.; Chatterjee, A.; Ruina, A.; Coleman, M. (1998). "The simplest walking model: Stability, complexity, and scaling". J BIOMECH. ENG. TRANS. ASME.
{{cite journal}}
: Cite has empty unknown parameter:|1=
(help) - ^ "Cornell Ranger website".
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Touchette, Hugo; Lloyd, Seth (2003). "Information-theoretic approach to the study of control systems". Physica A.
- ^ Chirikjian, Gregory (2011). Stochastic models, Information Theory, and Lie groups, Vol 2. Birkhauser.
- ^ Der, Ralf; Martius, G.; Hesse, F. (2006). "Let it roll -- emerging sensorimotor coordination in a spherical robot". Proceedings of Artificial Life X.
{{cite journal}}
: Cite has empty unknown parameters:|1=
and|2=
(help) - ^ Ay, Nihat; Bertschinger, N.; Der, Ralf (2008). "Predictive information and explorative behavior of autonomous robots". The European Physical Journal B-Condensed Matter and Complex Systems.
{{cite journal}}
: Cite has empty unknown parameters:|1=
and|2=
(help) - ^ Olsson, Lars; Nehaiv, Chrystoper; Polani, Daniel (2004). "Information trade-offs and the evolution of sensory layouts". Proceedings of Artificial Life IX.
{{cite journal}}
: Cite has empty unknown parameters:|1=
and|2=
(help) - ^ Lungarella, Max; Sporns, Olaf (2006). "Mapping information flow in sensorimotor network". PLOS Computational Biology.
{{cite journal}}
: Cite has empty unknown parameter:|1=
(help) - ^ Gomez, G.; Lungarella, Max; Tarapore, D. (2005). "Information-theoretic approach to embodied category learning". Proceedings of the 10th Int. Conf. on Artificial Life and Robotics.
{{cite journal}}
: Cite has empty unknown parameter:|1=
(help) - ^ Philpona, D.; O’ Regan, Kevin (2004). "Perception of the structure of the physical world using unknown multimodal sensors and effectors". Proceedings of Advances in Neural Information Processing Systems 16.
- ^ Prokopenko, M.; Gerasimov,, V.; Tanev, I. (2006). "Evolving spatiotemporal coordination in a modular robotic system". Proceedings of From Animals to Animats 9: 9th International Conference on the Simulation of Adaptive Behavior.
{{cite journal}}
: Cite has empty unknown parameter:|1=
(help)CS1 maint: extra punctuation (link) - ^ Tanev, I.; Ray, T.S.; Buller, A. (2005). "Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot". IEEE Transactions on Robotics.
{{cite journal}}
: Cite has empty unknown parameter:|1=
(help)