<a id="top"></a>

Satellite

From Wikipedia, the free encyclopedia

<a class="mw-jump-link" href="#mw-head">Jump to navigation</a> <a class="mw-jump-link" href="#searchInput">Jump to search</a>

<style data-mw-deduplicate="TemplateStyles:r1097763485">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}</style><tbody></tbody><style data-mw-deduplicate="TemplateStyles:r1033289096">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style>

<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Two_3U_CubeSats.jpg" class="mw-file-description"><img alt="Two 3U CubeSats" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Two_3U_CubeSats.jpg/330px-Two_3U_CubeSats.jpg" decoding="async" width="330" height="248" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Two_3U_CubeSats.jpg/495px-Two_3U_CubeSats.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Two_3U_CubeSats.jpg/660px-Two_3U_CubeSats.jpg 2x" data-file-width="1600" data-file-height="1200" /></a><figcaption>Two <a href="/wiki/CubeSat" title="CubeSat">CubeSats</a> orbiting around <a href="/wiki/Earth" title="Earth">Earth</a> after being deployed from the ISS <a href="/wiki/Kib%C5%8D_(ISS_module)" title="Kibō (ISS module)">Kibō module</a>'s Small Satellite Orbital Deployer</figcaption></figure>

A satellite or artificial satellite<a href="#cite_note-1">[a]</a> is an object, typically a <a href="/wiki/Spacecraft" title="Spacecraft">spacecraft</a>, placed into <a href="/wiki/Orbit" title="Orbit">orbit</a> around a <a href="/wiki/Astronomical_object" title="Astronomical object">celestial body</a>. Satellites have a variety of uses, including communication relay, <a href="/wiki/Weather_forecasting" title="Weather forecasting">weather forecasting</a>, navigation (<a href="/wiki/GPS" class="mw-redirect" title="GPS">GPS</a>), <a href="/wiki/Broadcasting" title="Broadcasting">broadcasting</a>, scientific research, and Earth observation. Additional military uses are reconnaissance, <a href="/wiki/Early_warning_system" title="Early warning system">early warning</a>, signals intelligence and, potentially, weapon delivery. Other satellites include the final rocket stages that place satellites in orbit and formerly useful satellites that later become defunct.

Except for <a href="/wiki/Passive_satellite" class="mw-redirect" title="Passive satellite">passive satellites</a>, most satellites have an <a href="/wiki/Electricity_generation" title="Electricity generation">electricity generation</a> system for equipment on board, such as <a href="/wiki/Solar_panel" title="Solar panel">solar panels</a> or <a href="/wiki/Radioisotope_thermoelectric_generator" title="Radioisotope thermoelectric generator">radioisotope thermoelectric generators</a> (RTGs). Most satellites also have a method of communication to <a href="/wiki/Ground_station" title="Ground station">ground stations</a>, called <a href="/wiki/Transponder_(satellite_communications)" title="Transponder (satellite communications)">transponders</a>. Many satellites use a <a href="/wiki/Satellite_bus" title="Satellite bus">standardized bus</a> to save cost and work, the most popular of which are small <a href="/wiki/CubeSat" title="CubeSat">CubeSats</a>. Similar satellites can work together as groups, forming <a href="/wiki/Satellite_constellation" title="Satellite constellation">constellations</a>. Because of the high <a href="/wiki/Launch_cost" class="mw-redirect" title="Launch cost">launch cost</a> to space, most satellites are designed to be as lightweight and robust as possible. Most communication satellites are radio <a href="/wiki/Broadcast_relay_station" title="Broadcast relay station">relay stations</a> in orbit and carry dozens of transponders, each with a bandwidth of tens of megahertz.

Satellites are placed from the surface to the orbit by <a href="/wiki/Launch_vehicle" title="Launch vehicle">launch vehicles</a>, high enough to avoid <a href="/wiki/Orbital_decay" title="Orbital decay">orbital decay</a> by the <a href="/wiki/Atmosphere" title="Atmosphere">atmosphere</a>. Satellites can then change or maintain the orbit by <a href="/wiki/Spacecraft_propulsion" title="Spacecraft propulsion">propulsion</a>, usually by <a href="/wiki/Thrusters_(spacecraft)" title="Thrusters (spacecraft)">chemical</a> or <a href="/wiki/Ion_thruster" title="Ion thruster">ion thrusters</a>. As of 2018, about 90% of the satellites orbiting the Earth are in <a href="/wiki/Low_Earth_orbit" title="Low Earth orbit">low Earth orbit</a> or <a href="/wiki/Geostationary_orbit" title="Geostationary orbit">geostationary orbit</a>; geostationary means the satellites stay still in the sky (relative to a fixed point on the ground). Some imaging satellites chose a <a href="/wiki/Sun-synchronous_orbit" title="Sun-synchronous orbit">Sun-synchronous orbit</a> because they can scan the entire globe with similar lighting. As the number of satellites and <a href="/wiki/Space_debris" title="Space debris">space debris</a> around Earth increases, the threat of collision has become more severe. A small number of satellites orbit other bodies (such as the <a href="/wiki/Lunar_orbit" title="Lunar orbit">Moon</a>, <a href="/wiki/Areocentric_orbit" title="Areocentric orbit">Mars</a>, and the <a href="/wiki/Heliocentric_orbit" title="Heliocentric orbit">Sun</a>) or many bodies at once (two for a <a href="/wiki/Halo_orbit" title="Halo orbit">halo orbit</a>, three for a <a href="/wiki/Lissajous_orbit" title="Lissajous orbit">Lissajous orbit</a>).

<a href="/wiki/Earth_observation_satellite" title="Earth observation satellite">Earth observation satellites</a> gather information for <a href="/wiki/Reconnaissance_satellite" title="Reconnaissance satellite">reconnaissance</a>, <a href="/wiki/Satellite_imagery" title="Satellite imagery">mapping</a>, <a href="/wiki/Weather_satellite" title="Weather satellite">monitoring the weather</a>, ocean, forest, etc. <a href="/wiki/Space_telescope" title="Space telescope">Space telescopes</a> take advantage of outer space's <a href="/wiki/Ultra-high_vacuum" title="Ultra-high vacuum">near perfect vacuum</a> to observe objects with the entire <a href="/wiki/Electromagnetic_spectrum" title="Electromagnetic spectrum">electromagnetic spectrum</a>. Because satellites can see a large portion of the Earth at once, <a href="/wiki/Communications_satellites" class="mw-redirect" title="Communications satellites">communications satellites</a> can relay information to remote places. The signal delay from satellites and their orbit's predictability are used in <a href="/wiki/Satellite_navigation" title="Satellite navigation">satellite navigation</a> systems, such as GPS. <a href="/wiki/Space_probe" class="mw-redirect" title="Space probe">Space probes</a> are satellites designed for robotic <a href="/wiki/Space_exploration" title="Space exploration">space exploration</a> outside of Earth, and <a href="/wiki/Space_station" title="Space station">space stations</a> are in essence crewed satellites.

The first artificial satellite launched into the Earth's orbit was the <a href="/wiki/Soviet_Union" title="Soviet Union">Soviet Union</a>'s <a href="/wiki/Sputnik_1" title="Sputnik 1">Sputnik 1</a>, on October 4, 1957. As of December 31, 2022, there are 6,718 operational satellites in the Earth's orbit, of which 4,529 belong to the United States (3,996 commercial), 590 belong to China, 174 belong to Russia, and 1,425 belong to other nations.<a href="#cite_note-2">[1]</a>

History

[<a href="/w/index.php?title=Satellite&action=edit&section=1" title="Edit section's source code: History">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

Early proposals

[<a href="/w/index.php?title=Satellite&action=edit&section=2" title="Edit section's source code: Early proposals">edit source</a>]

The first published mathematical study of the possibility of an artificial satellite was <a href="/wiki/Newton%27s_cannonball" title="Newton's cannonball">Newton's cannonball</a>, a thought experiment by <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> to explain the motion of <a href="/wiki/Natural_satellite" title="Natural satellite">natural satellites</a>, in his <a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Philosophiæ Naturalis Principia Mathematica</a> (1687). The first fictional depiction of a satellite being launched into orbit was a <a href="/wiki/Short_story" title="Short story">short story</a> by <a href="/wiki/Edward_Everett_Hale" title="Edward Everett Hale">Edward Everett Hale</a>, "<a href="/wiki/The_Brick_Moon" title="The Brick Moon">The Brick Moon</a>" (1869).<a href="#cite_note-3">[2]</a><a href="#cite_note-4">[3]</a> The idea surfaced again in <a href="/wiki/Jules_Verne" title="Jules Verne">Jules Verne</a>'s <a href="/wiki/The_Begum%27s_Fortune" title="The Begum's Fortune">The Begum's Fortune</a> (1879).

In 1903, <a href="/wiki/Konstantin_Tsiolkovsky" title="Konstantin Tsiolkovsky">Konstantin Tsiolkovsky</a> (1857–1935) published Exploring Space Using Jet Propulsion Devices, which was the first academic treatise on the use of rocketry to launch spacecraft. He calculated the <a href="/wiki/Orbital_speed" title="Orbital speed">orbital speed</a> required for a minimal orbit, and inferred that a <a href="/wiki/Multi-stage_rocket" class="mw-redirect" title="Multi-stage rocket">multi-stage rocket</a> fueled by liquid <a href="/wiki/Propellant" title="Propellant">propellants</a> could achieve this.

<a href="/wiki/Herman_Poto%C4%8Dnik" title="Herman Potočnik">Herman Potočnik</a> explored the idea of using orbiting spacecraft for detailed peaceful and military observation of the ground in his 1928 book, The Problem of Space Travel. He described how the special conditions of space could be useful for scientific experiments. The book described <a href="/wiki/Geostationary" class="mw-redirect" title="Geostationary">geostationary</a> satellites (first put forward by <a href="/wiki/Konstantin_Tsiolkovsky" title="Konstantin Tsiolkovsky">Konstantin Tsiolkovsky</a>) and discussed the communication between them and the ground using radio, but fell short with the idea of using satellites for mass broadcasting and as telecommunications relays.<a href="#cite_note-5">[4]</a>

In a 1945 <a href="/wiki/Wireless_World" class="mw-redirect" title="Wireless World">Wireless World</a> article, English science fiction writer <a href="/wiki/Arthur_C._Clarke" title="Arthur C. Clarke">Arthur C. Clarke</a> described in detail the possible use of <a href="/wiki/Communications_satellite" title="Communications satellite">communications satellites</a> for mass communications. He suggested that three geostationary satellites would provide coverage over the entire planet.<a href="#cite_note-:0-6">[5]</a>: 1–2 

In May 1946, the <a href="/wiki/United_States_Air_Force" title="United States Air Force">United States Air Force</a>'s <a href="/wiki/Project_RAND" class="mw-redirect" title="Project RAND">Project RAND</a> released the <a href="/wiki/Preliminary_Design_of_an_Experimental_World-Circling_Spaceship" title="Preliminary Design of an Experimental World-Circling Spaceship">Preliminary Design of an Experimental World-Circling Spaceship</a>, which stated "A satellite vehicle with appropriate instrumentation can be expected to be one of the most potent scientific tools of the Twentieth Century."<a href="#cite_note-7">[6]</a> The United States had been considering launching orbital satellites since 1945 under the <a href="/wiki/Bureau_of_Aeronautics" title="Bureau of Aeronautics">Bureau of Aeronautics</a> of the <a href="/wiki/United_States_Navy" title="United States Navy">United States Navy</a>. Project RAND eventually released the report, but considered the satellite to be a tool for science, politics, and propaganda, rather than a potential military weapon.<a href="#cite_note-8">[7]</a>

In 1946, American theoretical astrophysicist <a href="/wiki/Lyman_Spitzer" title="Lyman Spitzer">Lyman Spitzer</a> proposed an orbiting <a href="/wiki/Space_telescope" title="Space telescope">space telescope</a>.<a href="#cite_note-9">[8]</a>

In February 1954, Project RAND released "Scientific Uses for a Satellite Vehicle", by R. R. Carhart.<a href="#cite_note-10">[9]</a> This expanded on potential scientific uses for satellite vehicles and was followed in June 1955 with "The Scientific Use of an Artificial Satellite", by H. K. Kallmann and W. W. Kellogg.<a href="#cite_note-11">[10]</a>

First satellites

[<a href="/w/index.php?title=Satellite&action=edit&section=3" title="Edit section's source code: First satellites">edit source</a>]

<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sputnik_asm.jpg" class="mw-file-description"><img alt="Steel ball with 4 antennas" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/Sputnik_asm.jpg/220px-Sputnik_asm.jpg" decoding="async" width="220" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/Sputnik_asm.jpg/330px-Sputnik_asm.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/be/Sputnik_asm.jpg/440px-Sputnik_asm.jpg 2x" data-file-width="1094" data-file-height="896" /></a><figcaption>Replica of the <a href="/wiki/Sputnik_1" title="Sputnik 1">Sputnik 1</a></figcaption></figure>

The first artificial satellite was <a href="/wiki/Sputnik_1" title="Sputnik 1">Sputnik 1</a>, launched by the <a href="/wiki/Soviet_Union" title="Soviet Union">Soviet Union</a> on 4 October 1957 under the <a href="/wiki/Sputnik_program" class="mw-redirect" title="Sputnik program">Sputnik program</a>, with <a href="/wiki/Sergei_Korolev" title="Sergei Korolev">Sergei Korolev</a> as chief designer. Sputnik 1 helped to identify the density of high <a href="/wiki/Earth%27s_atmosphere#Temperature_and_layers" class="mw-redirect" title="Earth's atmosphere">atmospheric layers</a> through measurement of its orbital change and provided data on radio-signal distribution in the <a href="/wiki/Ionosphere" title="Ionosphere">ionosphere</a>. The unanticipated announcement of Sputnik 1's success precipitated the <a href="/wiki/Sputnik_crisis" title="Sputnik crisis">Sputnik crisis</a> in the United States and ignited the so-called Space Race within the <a href="/wiki/Cold_War" title="Cold War">Cold War</a>.

In the context of activities planned for the <a href="/wiki/International_Geophysical_Year" title="International Geophysical Year">International Geophysical Year</a> (1957–1958), the <a href="/wiki/White_House" title="White House">White House</a> announced on 29 July 1955 that the U.S. intended to launch satellites by the spring of 1958. This became known as <a href="/wiki/Project_Vanguard" title="Project Vanguard">Project Vanguard</a>. On 31 July, the Soviet Union announced its intention to launch a satellite by the fall of 1957.

<a href="/wiki/Sputnik_2" title="Sputnik 2">Sputnik 2</a> was launched on 3 November 1957 and carried the first living passenger into orbit, a dog named <a href="/wiki/Laika" title="Laika">Laika</a>.<a href="#cite_note-nasa_animals-12">[11]</a>

In early 1955, after being pressured by the <a href="/wiki/American_Rocket_Society" title="American Rocket Society">American Rocket Society</a>, the <a href="/wiki/National_Science_Foundation" title="National Science Foundation">National Science Foundation</a>, and the International Geophysical Year, the Army and Navy worked on <a href="/wiki/Project_Orbiter" title="Project Orbiter">Project Orbiter</a> with two competing programs. The army used the <a href="/wiki/Jupiter-C_IRBM" class="mw-redirect" title="Jupiter-C IRBM">Jupiter C rocket</a>, while the civilian–Navy program used the <a href="/wiki/Vanguard_(rocket)" title="Vanguard (rocket)">Vanguard rocket</a> to launch a satellite. <a href="/wiki/Explorer_1" title="Explorer 1">Explorer 1</a> became the United States' first artificial satellite, on 31 January 1958.<a href="#cite_note-13">[12]</a> The information sent back from its radiation detector led to the discovery of the Earth's <a href="/wiki/Van_Allen_radiation_belt" title="Van Allen radiation belt">Van Allen radiation belts</a>.<a href="#cite_note-Allen-14">[13]</a> The <a href="/wiki/TIROS-1" title="TIROS-1">TIROS-1</a> spacecraft, launched on April 1, 1960, as part of NASA's <a href="/wiki/Television_Infrared_Observation_Satellite" title="Television Infrared Observation Satellite">Television Infrared Observation Satellite</a> (TIROS) program, sent back the first television footage of weather patterns to be taken from space.<a href="#cite_note-Tatem-15">[14]</a>

In June 1961, three and a half years after the launch of Sputnik 1, the <a href="/wiki/United_States_Space_Surveillance_Network" title="United States Space Surveillance Network">United States Space Surveillance Network</a> cataloged 115 Earth-orbiting satellites.<a href="#cite_note-16">[15]</a>

Astérix or A-1 (initially conceptualized as FR.2 or FR-2) is the first French satellite. It was launched on 26 November 1965 by a Diamant A rocket from the CIEES launch site at Hammaguir, Algeria. With Astérix, France became the sixth country to have an artificial satellite and the third country to launch a satellite on its own rocket

France is the third country to launch a satellite on its own rocket, the <a href="/wiki/Ast%C3%A9rix_(satellite)" title="Astérix (satellite)">Astérix</a>, on 26 November 1965 by a <a href="/wiki/Diamant" title="Diamant">Diamant</a> A rocket from the CIEES launch site at <a href="/wiki/Hammaguir" title="Hammaguir">Hammaguir</a>, <a href="/wiki/Algeria" title="Algeria">Algeria</a>.

Early satellites were built to unique designs. With advancements in technology, multiple satellites began to be built on <a href="/wiki/Comparison_of_satellite_buses" title="Comparison of satellite buses">single model platforms</a> called <a href="/wiki/Satellite_bus" title="Satellite bus">satellite buses</a>. The first standardized satellite bus design was the <a href="/wiki/HS-333" title="HS-333">HS-333</a> <a href="/wiki/Geosynchronous_orbit" title="Geosynchronous orbit">geosynchronous</a> (GEO) <a href="/wiki/Communication_satellite" class="mw-redirect" title="Communication satellite">communication satellite</a> launched in 1972. Beginning in 1997, <a href="/wiki/FreeFlyer" title="FreeFlyer">FreeFlyer</a> is a commercial off-the-shelf software application for satellite mission analysis, design, and operations.

Later Satellite Development

[<a href="/w/index.php?title=Satellite&action=edit&section=4" title="Edit section's source code: Later Satellite Development">edit source</a>]
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Space_capabilities_-_launch_and_satellite.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Space_capabilities_-_launch_and_satellite.png/300px-Space_capabilities_-_launch_and_satellite.png" decoding="async" width="300" height="139" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Space_capabilities_-_launch_and_satellite.png/450px-Space_capabilities_-_launch_and_satellite.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Space_capabilities_-_launch_and_satellite.png/600px-Space_capabilities_-_launch_and_satellite.png 2x" data-file-width="1357" data-file-height="628" /></a><figcaption><style data-mw-deduplicate="TemplateStyles:r981673959">.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}</style>
  <a href="/wiki/Timeline_of_first_orbital_launches_by_country" title="Timeline of first orbital launches by country">Orbital launch</a> and satellite operation
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959">
  Satellite operation, launched by foreign supplier
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959">
  Satellite in development
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r981673959">
  <a href="/wiki/Comparison_of_small_lift_launch_systems" class="mw-redirect" title="Comparison of small lift launch systems">Orbital launch</a> project at advanced stage or indigenous <a href="/wiki/Ballistic_missile" title="Ballistic missile">ballistic missiles</a> deployed
</figcaption></figure>

While Canada was the third country to build a satellite which was launched into space,<a href="#cite_note-17">[16]</a> it was launched aboard an <a href="/wiki/United_States" title="United States">American</a> rocket from an American spaceport. The same goes for Australia, whose launch of the first satellite involved a donated U.S. <a href="/wiki/PGM-11_Redstone" title="PGM-11 Redstone">Redstone</a> rocket and American support staff as well as a joint launch facility with the United Kingdom.<a href="#cite_note-18">[17]</a> The first Italian satellite <a href="/wiki/San_Marco_1" title="San Marco 1">San Marco 1</a> was launched on 15 December 1964 on a U.S. <a href="/wiki/Scout_rocket" class="mw-redirect" title="Scout rocket">Scout rocket</a> from <a href="/wiki/Wallops_Island" title="Wallops Island">Wallops Island</a> (Virginia, United States) with an Italian launch team trained by <a href="/wiki/NASA" title="NASA">NASA</a>.<a href="#cite_note-19">[18]</a> In similar occasions, almost all further first national satellites were launched by foreign rockets.[<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>]

After the late 2010s, and especially after the advent and operational fielding of large <a href="/wiki/Satellite_internet_constellation" title="Satellite internet constellation">satellite internet constellations</a>—where on-orbit active satellites more than doubled over a period of five years—the companies building the constellations began to propose regular planned deorbiting of the older satellites that reached the <a href="/wiki/End-of-life_(product)" class="mw-redirect" title="End-of-life (product)">end of life</a>, as a part of the <a href="/wiki/Regulatory_authority" class="mw-redirect" title="Regulatory authority">regulatory process</a> of obtaining a launch license.[<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>] The largest artificial satellite ever is the <a href="/wiki/International_Space_Station" title="International Space Station">International Space Station</a>.<a href="#cite_note-20">[19]</a>

By the early 2000s, and particularly after the advent of <a href="/wiki/CubeSat" title="CubeSat">CubeSats</a> and increased launches of <a href="/wiki/Microsatellite_(spaceflight)" class="mw-redirect" title="Microsatellite (spaceflight)">microsats</a>—frequently launched to the lower altitudes of <a href="/wiki/Low_Earth_orbit" title="Low Earth orbit">low Earth orbit</a> (LEO)—satellites began to more frequently be designed to get destroyed, or breakup and burnup entirely in the atmosphere.<a href="#cite_note-21">[20]</a>

For example, <a href="/wiki/SpaceX" title="SpaceX">SpaceX</a> <a href="/wiki/Starlink" title="Starlink">Starlink</a> satellites, the first large satellite internet constellation to exceed 1000 active satellites on orbit in 2020, are designed to be 100% demisable and burn up completely on their atmospheric reentry at the end of their life, or in the event of an early satellite failure.<a href="#cite_note-tasia202104-22">[21]</a>

In different periods, many countries, such as <a href="/wiki/Algeria" title="Algeria">Algeria</a>, <a href="/wiki/Argentina" title="Argentina">Argentina</a>, <a href="/wiki/Australia" title="Australia">Australia</a>, <a href="/wiki/Austria" title="Austria">Austria</a>, <a href="/wiki/Brazil" title="Brazil">Brazil</a>, <a href="/wiki/Canada" title="Canada">Canada</a>, <a href="/wiki/Chile" title="Chile">Chile</a>, <a href="/wiki/China" title="China">China</a>, <a href="/wiki/Denmark" title="Denmark">Denmark</a>, <a href="/wiki/Egypt" title="Egypt">Egypt</a>, <a href="/wiki/Finland" title="Finland">Finland</a>, <a href="/wiki/France" title="France">France</a>, <a href="/wiki/Germany" title="Germany">Germany</a>, <a href="/wiki/India" title="India">India</a>, <a href="/wiki/Iran" title="Iran">Iran</a>, <a href="/wiki/Israel" title="Israel">Israel</a>, <a href="/wiki/Italy" title="Italy">Italy</a>, <a href="/wiki/Japan" title="Japan">Japan</a>, <a href="/wiki/Kazakhstan" title="Kazakhstan">Kazakhstan</a>, <a href="/wiki/South_Korea" title="South Korea">South Korea</a>, <a href="/wiki/Malaysia" title="Malaysia">Malaysia</a>, <a href="/wiki/Mexico" title="Mexico">Mexico</a>, the <a href="/wiki/Netherlands" title="Netherlands">Netherlands</a>, <a href="/wiki/Norway" title="Norway">Norway</a>, <a href="/wiki/Pakistan" title="Pakistan">Pakistan</a>, <a href="/wiki/Poland" title="Poland">Poland</a>, <a href="/wiki/Russia" title="Russia">Russia</a>, <a href="/wiki/Saudi_Arabia" title="Saudi Arabia">Saudi Arabia</a>, <a href="/wiki/South_Africa" title="South Africa">South Africa</a>, <a href="/wiki/Spain" title="Spain">Spain</a>, <a href="/wiki/Switzerland" title="Switzerland">Switzerland</a>, <a href="/wiki/Thailand" title="Thailand">Thailand</a>, <a href="/wiki/Turkey" title="Turkey">Turkey</a>, <a href="/wiki/Ukraine" title="Ukraine">Ukraine</a>, the <a href="/wiki/United_Kingdom" title="United Kingdom">United Kingdom</a> and the <a href="/wiki/United_States" title="United States">United States</a>, had some satellites in orbit.<a href="#cite_note-23">[22]</a>

Japan's space agency (JAXA) and <a href="/wiki/NASA" title="NASA">NASA</a> plan to send a wooden satellite prototype called LingoSat into orbit in the summer of 2024. They have been working on this project for few years and sent first wood samples to the space in 2021 to test the material's resilience to space conditions.

<a href="#cite_note-24">[23]</a>

Components

[<a href="/w/index.php?title=Satellite&action=edit&section=5" title="Edit section's source code: Components">edit source</a>]

Orbit and altitude control

[<a href="/w/index.php?title=Satellite&action=edit&section=6" title="Edit section's source code: Orbit and altitude control">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ion_Engine_Test_Firing_-_GPN-2000-000482.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Ion_Engine_Test_Firing_-_GPN-2000-000482.jpg/220px-Ion_Engine_Test_Firing_-_GPN-2000-000482.jpg" decoding="async" width="220" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Ion_Engine_Test_Firing_-_GPN-2000-000482.jpg/330px-Ion_Engine_Test_Firing_-_GPN-2000-000482.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Ion_Engine_Test_Firing_-_GPN-2000-000482.jpg/440px-Ion_Engine_Test_Firing_-_GPN-2000-000482.jpg 2x" data-file-width="1880" data-file-height="1482" /></a><figcaption>Firing of <a href="/wiki/Deep_Space_1" title="Deep Space 1">Deep Space 1</a>'s ion thruster</figcaption></figure>

Most satellites use chemical or <a href="/wiki/Ion_propulsion" class="mw-redirect" title="Ion propulsion">ion propulsion</a> to <a href="/wiki/Orbital_maneuver" title="Orbital maneuver">adjust</a> or <a href="/wiki/Orbital_station-keeping" title="Orbital station-keeping">maintain their orbit</a>,<a href="#cite_note-:0-6">[5]</a>: 78  coupled with <a href="/wiki/Reaction_wheel" title="Reaction wheel">reaction wheels</a> to control their <a href="/wiki/Aircraft_principal_axes" title="Aircraft principal axes">three axis of rotation</a> or attitude. Satellites close to Earth are affected the most by variations in the <a href="/wiki/Earth%27s_magnetic_field" title="Earth's magnetic field">Earth's magnetic</a>, <a href="/wiki/Gravity_of_Earth" title="Gravity of Earth">gravitational field</a> and the Sun's <a href="/wiki/Radiation_pressure" title="Radiation pressure">radiation pressure</a>; satellites that are further away are affected more by other bodies' gravitational field by the Moon and the Sun. Satellites utilize ultra-white reflective coatings to prevent damage from UV radiation.<a href="#cite_note-25">[24]</a> Without orbit and orientation control, satellites in orbit will not be able to communicate with <a href="/wiki/Ground_station" title="Ground station">ground stations</a> on the Earth.<a href="#cite_note-:0-6">[5]</a>: 75–76 

Chemical thrusters on satellites usually use <a href="/wiki/Monopropellant" title="Monopropellant">monopropellant</a> (one-part) or <a href="/wiki/Bipropellant" class="mw-redirect" title="Bipropellant">bipropellant</a> (two-parts) that are <a href="/wiki/Hypergolic_propellant" title="Hypergolic propellant">hypergolic</a>. Hypergolic means able to combust spontaneously when in contact with each other or to a <a href="/wiki/Catalysis" title="Catalysis">catalyst</a>. The most commonly used propellant mixtures on satellites are <a href="/wiki/Hydrazine" title="Hydrazine">hydrazine</a>-based monopropellants or <a href="/wiki/Monomethylhydrazine" title="Monomethylhydrazine">monomethylhydrazine</a>–<a href="/wiki/Dinitrogen_tetroxide" title="Dinitrogen tetroxide">dinitrogen tetroxide</a> bipropellants. Ion thrusters on satellites usually are <a href="/wiki/Hall-effect_thruster" title="Hall-effect thruster">Hall-effect thrusters</a>, which generate thrust by accelerating <a href="/wiki/Positive_ions" class="mw-redirect" title="Positive ions">positive ions</a> through a negatively-charged grid. Ion propulsion is more efficient propellant-wise than chemical propulsion but its thrust is very small (around 0.5 N or 0.1 lbf), and thus requires a longer burn time. The thrusters usually use <a href="/wiki/Xenon" title="Xenon">xenon</a> because it is <a href="/wiki/Inert_gas" title="Inert gas">inert</a>, can be easily <a href="/wiki/Ionized" class="mw-redirect" title="Ionized">ionized</a>, has a high <a href="/wiki/Atomic_mass" title="Atomic mass">atomic mass</a> and storable as a high-pressure liquid.<a href="#cite_note-:0-6">[5]</a>: 78–79 

Power

[<a href="/w/index.php?title=Satellite&action=edit&section=7" title="Edit section's source code: Power">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:ISS-54_ELC-1,_main_solar_arrays_and_radiators_seen_from_the_Cupola.jpg" class="mw-file-description"><img alt="see caption" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/ISS-54_ELC-1%2C_main_solar_arrays_and_radiators_seen_from_the_Cupola.jpg/220px-ISS-54_ELC-1%2C_main_solar_arrays_and_radiators_seen_from_the_Cupola.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/ISS-54_ELC-1%2C_main_solar_arrays_and_radiators_seen_from_the_Cupola.jpg/330px-ISS-54_ELC-1%2C_main_solar_arrays_and_radiators_seen_from_the_Cupola.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b6/ISS-54_ELC-1%2C_main_solar_arrays_and_radiators_seen_from_the_Cupola.jpg/440px-ISS-54_ELC-1%2C_main_solar_arrays_and_radiators_seen_from_the_Cupola.jpg 2x" data-file-width="5568" data-file-height="3712" /></a><figcaption>The <a href="/wiki/International_Space_Station" title="International Space Station">International Space Station</a>'s black solar panels on the left and white <a href="/wiki/Radiator" title="Radiator">radiators</a> on the right</figcaption></figure>

Most satellites use <a href="/wiki/Solar_panels_on_spacecraft" title="Solar panels on spacecraft">solar panels</a> to generate power, and a few in deep space with limited sunlight use <a href="/wiki/Radioisotope_thermoelectric_generator" title="Radioisotope thermoelectric generator">radioisotope thermoelectric generators</a>. <a href="/wiki/Slip_ring" title="Slip ring">Slip rings</a> attach solar panels to the satellite; the slip rings can rotate to be perpendicular with the sunlight and generate the most power. All satellites with a solar panel must also have <a href="/wiki/Batteries_in_space" title="Batteries in space">batteries</a>, because sunlight is blocked inside the launch vehicle and at night. The most common types of batteries for satellites are <a href="/wiki/Lithium-ion_battery" title="Lithium-ion battery">lithium-ion</a>, and in the past <a href="/wiki/Nickel-hydrogen_batteries" class="mw-redirect" title="Nickel-hydrogen batteries">nickel–hydrogen</a>.<a href="#cite_note-:0-6">[5]</a>: 88–89 

Communications

[<a href="/w/index.php?title=Satellite&action=edit&section=8" title="Edit section's source code: Communications">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

Applications

[<a href="/w/index.php?title=Satellite&action=edit&section=9" title="Edit section's source code: Applications">edit source</a>]

Earth observation

[<a href="/w/index.php?title=Satellite&action=edit&section=10" title="Edit section's source code: Earth observation">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Earth_Radiation_Budget_Satellite.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Earth_Radiation_Budget_Satellite.jpg/220px-Earth_Radiation_Budget_Satellite.jpg" decoding="async" width="220" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Earth_Radiation_Budget_Satellite.jpg/330px-Earth_Radiation_Budget_Satellite.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Earth_Radiation_Budget_Satellite.jpg/440px-Earth_Radiation_Budget_Satellite.jpg 2x" data-file-width="6888" data-file-height="7056" /></a><figcaption>Deployment of the <a href="/wiki/Earth_Radiation_Budget_Satellite" title="Earth Radiation Budget Satellite">Earth Radiation Budget Satellite</a> on <a href="/wiki/STS-41-G" title="STS-41-G">STS-41-G</a>, collecting data on Earth's weather and climate</figcaption></figure>

Earth observation satellites are designed to monitor and survey the Earth, called <a href="/wiki/Remote_sensing" title="Remote sensing">remote sensing</a>. Most Earth observation satellites are placed in low Earth orbit for a high data resolution, though some are placed in a <a href="/wiki/Geostationary_orbit" title="Geostationary orbit">geostationary orbit</a> for an uninterrupted coverage. Some satellites are placed in a <a href="/wiki/Sun-synchronous_orbit" title="Sun-synchronous orbit">Sun-synchronous orbit</a> to have consistent lighting and obtain a total view of the Earth. Depending on the satellites' functions, they might have a <a href="/wiki/Satellite_imagery" title="Satellite imagery">normal camera</a>, <a href="/wiki/Space-based_radar" title="Space-based radar">radar</a>, <a href="/wiki/Lidar" title="Lidar">lidar</a>, <a href="/wiki/Photometer" title="Photometer">photometer</a>, or atmospheric instruments. Earth observation satellite's data is most used in <a href="/wiki/Archaeology" title="Archaeology">archaeology</a>, <a href="/wiki/Cartography" title="Cartography">cartography</a>, <a href="/wiki/Environmental_monitoring" title="Environmental monitoring">environmental monitoring</a>, <a href="/wiki/Meteorology" title="Meteorology">meteorology</a>, and <a href="/wiki/Reconnaissance" title="Reconnaissance">reconnaissance</a> applications.[<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>] As of 2021, there are over 950 Earth observation satellites, with the largest number of satellites operated with <a href="/wiki/Planet_Labs" title="Planet Labs">Planet Labs</a>.<a href="#cite_note-26">[25]</a>

<a href="/wiki/Weather_satellite" title="Weather satellite">Weather satellites</a> monitor <a href="/wiki/Cloud" title="Cloud">clouds</a>, <a href="/wiki/Street_light" title="Street light">city lights</a>, <a href="/wiki/Fire" title="Fire">fires</a>, effects of <a href="/wiki/Pollution" title="Pollution">pollution</a>, <a href="/wiki/Auroral_light" class="mw-redirect" title="Auroral light">auroras</a>, <a href="/wiki/Dust_storm" title="Dust storm">sand and dust storms</a>, <a href="/wiki/Snow" title="Snow">snow</a> cover, <a href="/wiki/Ice" title="Ice">ice</a> mapping, boundaries of <a href="/wiki/Ocean_current" title="Ocean current">ocean currents</a>, <a href="/wiki/Energy" title="Energy">energy</a> flows, etc. Environmental monitoring satellites can detect changes in the Earth's <a href="/wiki/Vegetation" title="Vegetation">vegetation</a>, atmospheric trace gas content, sea state, ocean color, and ice fields. By monitoring vegetation changes over time, droughts can be monitored by comparing the current vegetation state to its long term average.<a href="#cite_note-27">[26]</a> Anthropogenic emissions can be monitored by evaluating data of tropospheric NO2 and SO2.[<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>]

Communication

[<a href="/w/index.php?title=Satellite&action=edit&section=11" title="Edit section's source code: Communication">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">
<style data-mw-deduplicate="TemplateStyles:r1066933788">.mw-parser-output .excerpt-hat .mw-editsection-like{font-style:normal}</style>

A <a href="/wiki/Communications_satellite" title="Communications satellite">communications satellite</a> is an <a href="/wiki/Artificial_satellite" class="mw-redirect" title="Artificial satellite">artificial satellite</a> that relays and amplifies <a href="/wiki/Radio" title="Radio">radio</a> telecommunication signals via a <a href="/wiki/Transponder_(satellite_communications)" title="Transponder (satellite communications)">transponder</a>; it creates a <a href="/wiki/Communication_channel" title="Communication channel">communication channel</a> between a source <a href="/wiki/Transmitter" title="Transmitter">transmitter</a> and a <a href="/wiki/Radio_receiver" title="Radio receiver">receiver</a> at different locations on <a href="/wiki/Earth" title="Earth">Earth</a>. Communications satellites are used for <a href="/wiki/Television" title="Television">television</a>, <a href="/wiki/Telephone" title="Telephone">telephone</a>, <a href="/wiki/Radio" title="Radio">radio</a>, <a href="/wiki/Internet" title="Internet">internet</a>, and <a href="/wiki/Military" title="Military">military</a> applications.<a href="#cite_note-28">[27]</a> Many communications satellites are in <a href="/wiki/Geostationary_orbit" title="Geostationary orbit">geostationary orbit</a> 22,236 miles (35,785 km) above the <a href="/wiki/Equator" title="Equator">equator</a>, so that the satellite appears stationary at the same point in the sky; therefore the <a href="/wiki/Satellite_dish" title="Satellite dish">satellite dish</a> antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. Others form <a href="/wiki/Satellite_constellation" title="Satellite constellation">satellite constellations</a> in <a href="/wiki/Low_Earth_orbit" title="Low Earth orbit">low Earth orbit</a>, where antennas on the ground have to follow the position of the satellites and switch between satellites frequently.

The <a href="/wiki/Radio_wave" title="Radio wave">radio waves</a> used for telecommunications links travel by <a href="/wiki/Line-of-sight_propagation" title="Line-of-sight propagation">line of sight</a> and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points.<a href="#cite_note-29">[28]</a> Communications satellites use a wide range of radio and <a href="/wiki/Microwave" title="Microwave">microwave</a> <a href="/wiki/Frequencies" class="mw-redirect" title="Frequencies">frequencies</a>. To avoid signal interference, international organizations have regulations for which frequency ranges or "bands" certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference.<a href="#cite_note-Communications_satellite_aerospace.org-30">[29]</a>

Spy satellites

[<a href="/w/index.php?title=Satellite&action=edit&section=12" title="Edit section's source code: Spy satellites">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

When an Earth observation satellite or a communications satellite is deployed for military or intelligence purposes, it is known as a spy satellite or reconnaissance satellite.

Their uses include early missile warning, nuclear explosion detection, electronic reconnaissance, and optical or radar imaging surveillance.

[<a href="/w/index.php?title=Satellite&action=edit&section=13" title="Edit section's source code: Navigation">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

Navigational satellites are satellites that use radio time signals transmitted to enable mobile receivers on the ground to determine their exact location. The relatively clear line of sight between the satellites and receivers on the ground, combined with ever-improving electronics, allows satellite navigation systems to measure location to accuracies on the order of a few meters in real time.

Telescope

[<a href="/w/index.php?title=Satellite&action=edit&section=14" title="Edit section's source code: Telescope">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

<a href="/wiki/Astronomical_satellite" class="mw-redirect" title="Astronomical satellite">Astronomical satellites</a> are satellites used for observation of distant planets, galaxies, and other outer space objects.[<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>]

<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Hubble_01.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hubble_01.jpg/220px-Hubble_01.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hubble_01.jpg/330px-Hubble_01.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hubble_01.jpg/440px-Hubble_01.jpg 2x" data-file-width="1536" data-file-height="1024" /></a><figcaption>The <a href="/wiki/Hubble_Space_Telescope" title="Hubble Space Telescope">Hubble Space Telescope</a></figcaption></figure>

Experimental

[<a href="/w/index.php?title=Satellite&action=edit&section=15" title="Edit section's source code: Experimental">edit source</a>]

<a href="/wiki/Tether_satellite" class="mw-redirect" title="Tether satellite">Tether satellites</a> are satellites that are connected to another satellite by a thin cable called a <a href="/wiki/Tether" title="Tether">tether</a>. <a href="/wiki/Recovery_satellite" class="mw-redirect" title="Recovery satellite">Recovery satellites</a> are satellites that provide a recovery of reconnaissance, biological, space-production and other payloads from orbit to Earth. <a href="/wiki/Biosatellite" title="Biosatellite">Biosatellites</a> are satellites designed to carry living organisms, generally for scientific experimentation. <a href="/wiki/Space-based_solar_power" title="Space-based solar power">Space-based solar power</a> satellites are proposed satellites that would collect energy from sunlight and transmit it for use on Earth or other places.[<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>]

Weapon

[<a href="/w/index.php?title=Satellite&action=edit&section=16" title="Edit section's source code: Weapon">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096">

Since the mid-2000s, satellites have been hacked by militant organizations to broadcast propaganda and to pilfer classified information from military communication networks.<a href="#cite_note-31">[30]</a><a href="#cite_note-32">[31]</a> For testing purposes, satellites in low earth orbit have been destroyed by ballistic missiles launched from the Earth. <a href="/wiki/Russia" title="Russia">Russia</a>, <a href="/wiki/United_States" title="United States">United States</a>, <a href="/wiki/China" title="China">China</a> and <a href="/wiki/India" title="India">India</a> have demonstrated the ability to eliminate satellites.<a href="#cite_note-asat-33">[32]</a> In 2007, the <a href="/wiki/China" title="China">Chinese</a> military shot down an aging weather satellite,<a href="#cite_note-asat-33">[32]</a> followed by the <a href="/wiki/US_Navy" class="mw-redirect" title="US Navy">US Navy</a> shooting down a <a href="/wiki/NRO_L-21" class="mw-redirect" title="NRO L-21">defunct spy satellite</a> in February 2008.<a href="#cite_note-34">[33]</a> On 18 November 2015, after two failed attempts, Russia successfully carried out a flight test of an <a href="/wiki/Anti-satellite_weapon" title="Anti-satellite weapon">anti-satellite</a> missile known as <a href="/wiki/A-235_anti-ballistic_missile_system" title="A-235 anti-ballistic missile system">Nudol</a>.[<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>] On 27 March 2019, India shot down a live test satellite at 300 km altitude in 3 minutes, becoming the fourth country to have the capability to destroy live satellites.<a href="#cite_note-35">[34]</a><a href="#cite_note-36">[35]</a>

Environmental Impact

[<a href="/w/index.php?title=Satellite&action=edit&section=17" title="Edit section's source code: Environmental Impact">edit source</a>]

The environmental impact of satellites is not currently well understood as they were previously assumed to be benign due to the rarity of satellite launches. However, the exponential increase and projected growth of satellite launches are bringing the issue into consideration. The main issues are resource use and the release of pollutants into the atmosphere which can happen at different stages of a satellite's lifetime.

Resource use

[<a href="/w/index.php?title=Satellite&action=edit&section=18" title="Edit section's source code: Resource use">edit source</a>]

Resource use is difficult to monitor and quantify for satellites and <a href="/wiki/Launch_vehicle" title="Launch vehicle">launch vehicles</a> due to their commercially sensitive nature. However, <a href="/wiki/Aluminium" title="Aluminium">aluminium</a> is a preferred metal in satellite construction due to its lightweight and relative cheapness and typically constitutes around 40% of a satellite's mass.<a href="#cite_note-schulz-37">[36]</a> Through mining and refining, aluminium has numerous negative environmental impacts and is one of the most carbon-intensive metals.<a href="#cite_note-38">[37]</a> Satellite manufacturing also requires rare elements such as <a href="/wiki/Lithium" title="Lithium">lithium</a>, <a href="/wiki/Gold" title="Gold">gold</a>, and <a href="/wiki/Gallium" title="Gallium">gallium</a>, some of which have significant environmental consequences linked to their mining and processing and/or are in limited supply.<a href="#cite_note-Gaston-39">[38]</a><a href="#cite_note-40">[39]</a><a href="#cite_note-41">[40]</a> Launch vehicles require larger amounts of raw materials to manufacture and the <a href="/wiki/Booster_(rocketry)" title="Booster (rocketry)">booster</a> stages are usually dropped into the ocean after fuel exhaustion. They are not normally recovered.<a href="#cite_note-Gaston-39">[38]</a> Two empty boosters used for <a href="/wiki/Ariane_5" title="Ariane 5">Ariane 5</a>, which were composed mainly of steel, weighed around 38 tons each,<a href="#cite_note-42">[41]</a> to give an idea of the quantity of materials that are often left in the ocean.

Launches

[<a href="/w/index.php?title=Satellite&action=edit&section=19" title="Edit section's source code: Launches">edit source</a>]

Rocket launches release numerous pollutants into every layer of the atmosphere, especially affecting the atmosphere above the <a href="/wiki/Tropopause" title="Tropopause">tropopause</a> where the byproducts of combustion can reside for extended periods.<a href="#cite_note-Durrieu-43">[42]</a> These pollutants can include <a href="/wiki/Black_carbon" title="Black carbon">black carbon</a>, <a href="/wiki/Carbon_dioxide" title="Carbon dioxide">CO2</a>, <a href="/wiki/NOx" title="NOx">nitrogen oxides</a> (NOx), <a href="/wiki/Aluminium" title="Aluminium">aluminium</a> and <a href="/wiki/Water_vapour" class="mw-redirect" title="Water vapour">water vapour</a>, but the mix of pollutants is dependent on rocket design and fuel type.<a href="#cite_note-44">[43]</a> The amount of <a href="/wiki/Greenhouse_gas" title="Greenhouse gas">green house gases</a> emitted by rockets is considered trivial as it contributes significantly less, around 0.01%,<a href="#cite_note-45">[44]</a> than the aviation industry yearly which itself accounts for 2-3% of the total global greenhouse gas emissions.<a href="#cite_note-Durrieu-43">[42]</a>

Rocket emissions in the <a href="/wiki/Stratosphere" title="Stratosphere">stratosphere</a> and their effects are only beginning to be studied and it is likely that the impacts will be more critical than emissions in the troposphere.<a href="#cite_note-Gaston-39">[38]</a> The stratosphere includes the <a href="/wiki/Ozone_layer" title="Ozone layer">ozone layer</a> and pollutants emitted from rockets can contribute to <a href="/wiki/Ozone_depletion" title="Ozone depletion">ozone depletion</a> in a number of ways. <a href="/wiki/Radical_(chemistry)" title="Radical (chemistry)">Radicals</a> such as NOx, HOx, and ClOx deplete stratospheric O3 through intermolecular reactions and can have huge impacts in trace amounts.<a href="#cite_note-Durrieu-43">[42]</a> However, it is currently understood that launch rates would need to increase by ten times to match the impact of regulated ozone-depleting substances.<a href="#cite_note-Ryan-46">[45]</a><a href="#cite_note-Ross-47">[46]</a> Whilst emissions of water vapour are largely deemed as inert, H2O is the source gas for HOx and can also contribute to ozone loss through the formation of ice particles.<a href="#cite_note-Ryan-46">[45]</a> Black carbon particles emitted by rockets can absorb solar radiation in the stratosphere and cause warming in the surrounding air which can then impact the circulatory dynamics of the stratosphere.<a href="#cite_note-48">[47]</a> Both warming and changes in circulation can then cause depletion of the ozone layer.

Operational lifetime

[<a href="/w/index.php?title=Satellite&action=edit&section=20" title="Edit section's source code: Operational lifetime">edit source</a>]

LEO Satellites

[<a href="/w/index.php?title=Satellite&action=edit&section=21" title="Edit section's source code: LEO Satellites">edit source</a>]

Several pollutants are released in the upper atmospheric layers during the orbital lifetime of <a href="/wiki/Low_Earth_orbit" title="Low Earth orbit">LEO satellites.</a> <a href="/wiki/Orbital_decay" title="Orbital decay">Orbital decay</a> is caused by atmospheric drag and to keep the satellite in the correct orbit the platform occasionally needs repositioning. To do this nozzle-based systems use a chemical propellant to create thrust. In most cases <a href="/wiki/Hydrazine" title="Hydrazine">hydrazine</a> is the chemical propellant used which then releases <a href="/wiki/Ammonia" title="Ammonia">ammonia</a>, <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> and <a href="/wiki/Nitrogen" title="Nitrogen">nitrogen</a> as gas into the upper atmosphere.<a href="#cite_note-Durrieu-43">[42]</a> Also, the environment of the outer atmosphere causes the degradation of exterior materials. The atomic oxygen in the upper atmosphere oxidises hydrocarbon-based polymers like <a href="/wiki/Kapton" title="Kapton">Kapton</a>, <a href="/wiki/Teflon" class="mw-redirect" title="Teflon">Teflon</a> and <a href="/wiki/BoPET" title="BoPET">Mylar</a> that are used to insulate and protect the satellite which then emits gasses like CO2 and CO into the atmosphere.<a href="#cite_note-49">[48]</a>

Night sky

[<a href="/w/index.php?title=Satellite&action=edit&section=22" title="Edit section's source code: Night sky">edit source</a>]

Given the current surge in satellites in the sky, soon hundreds of satellites may be clearly visible to the human eye at dark sites. It is estimated that the overall levels of diffuse brightness of the night skies has increased by up to 10% above natural levels.<a href="#cite_note-50">[49]</a> This has the potential to confuse organisms, like insects and night-migrating birds, that use celestial patterns for migration and orientation.<a href="#cite_note-51">[50]</a><a href="#cite_note-52">[51]</a> The impact this might have is currently unclear. The visibility of man-made objects in the night sky may also impact people's linkages with the world, nature, and culture.<a href="#cite_note-53">[52]</a>

Ground-based infrastructure

[<a href="/w/index.php?title=Satellite&action=edit&section=23" title="Edit section's source code: Ground-based infrastructure">edit source</a>]

At all points of a satellite's lifetime, its movement and processes are monitored on the ground through a network of facilities. The environmental cost of the infrastructure as well as day-to-day operations is likely to be quite high,<a href="#cite_note-Gaston-39">[38]</a> but quantification requires further investigation.

End of life

[<a href="/w/index.php?title=Satellite&action=edit&section=24" title="Edit section's source code: End of life">edit source</a>]

When satellites reach the end of life they are intentionally deorbited or moved to a <a href="/wiki/Graveyard_orbit" title="Graveyard orbit">graveyard orbit</a> further away from Earth in order to reduce <a href="/wiki/Space_debris" title="Space debris">space debris</a>. Physical collection or removal is not economical or even currently possible. Moving satellites out to a graveyard orbit is also unsustainable because they remain there for hundreds of years.<a href="#cite_note-Gaston-39">[38]</a> It will lead to the further pollution of space and future issues with space debris. When satellites deorbit much of it is destroyed during re-entry into the atmosphere due to the heat. This introduces more material and pollutants into the atmosphere.<a href="#cite_note-schulz-37">[36]</a><a href="#cite_note-54">[53]</a> There have been concerns expressed about the potential damage to the ozone layer and the possibility of increasing the earth's <a href="/wiki/Albedo" title="Albedo">albedo</a>, reducing warming but also resulting in accidental <a href="/wiki/Geoengineering" class="mw-redirect" title="Geoengineering">geoengineering</a> of the earth's climate.<a href="#cite_note-Gaston-39">[38]</a> After deorbiting 70% of satellites end up in the ocean and are rarely recovered.<a href="#cite_note-Durrieu-43">[42]</a>

Pollution and interference

[<a href="/w/index.php?title=Satellite&action=edit&section=25" title="Edit section's source code: Pollution and interference">edit source</a>]

<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:The_growth_of_all_tracked_objects_in_space_over_time_(space_debris_and_satellites).png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/The_growth_of_all_tracked_objects_in_space_over_time_%28space_debris_and_satellites%29.png/220px-The_growth_of_all_tracked_objects_in_space_over_time_%28space_debris_and_satellites%29.png" decoding="async" width="220" height="167" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/The_growth_of_all_tracked_objects_in_space_over_time_%28space_debris_and_satellites%29.png/330px-The_growth_of_all_tracked_objects_in_space_over_time_%28space_debris_and_satellites%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e9/The_growth_of_all_tracked_objects_in_space_over_time_%28space_debris_and_satellites%29.png/440px-The_growth_of_all_tracked_objects_in_space_over_time_%28space_debris_and_satellites%29.png 2x" data-file-width="2265" data-file-height="1722" /></a><figcaption>The growth of all tracked objects in space over time<a href="#cite_note-10.1038/s41550-022-01655-6-55">[54]</a></figcaption></figure>

Issues like <a href="/wiki/Space_debris" title="Space debris">space debris</a>, radio and <a href="/wiki/Light_pollution" title="Light pollution">light pollution</a> are increasing in magnitude and at the same time lack progress in national or international regulation.<a href="#cite_note-sp1-56">[55]</a><a href="#cite_note-10.1038/s41550-022-01655-6-55">[54]</a> Space debris pose dangers to the spacecraft<a href="#cite_note-57">[56]</a><a href="#cite_note-physUT-58">[57]</a> (including satellites)<a href="#cite_note-physUT-58">[57]</a><a href="#cite_note-59">[58]</a> in or crossing geocentric orbits and have the potential to drive a <a href="/wiki/Kessler_syndrome" title="Kessler syndrome">Kessler syndrome</a><a href="#cite_note-60">[59]</a> which could potentially curtail humanity from conducting space endeavors in the future.<a href="#cite_note-61">[60]</a><a href="#cite_note-62">[61]</a>

With increase in the number of <a href="/wiki/Satellite_constellation" title="Satellite constellation">satellite constellations</a>, like <a href="/wiki/SpaceX" title="SpaceX">SpaceX</a> <a href="/wiki/Starlink" title="Starlink">Starlink</a>, the astronomical community, such as the <a href="/wiki/International_Astronomical_Union" title="International Astronomical Union">IAU</a>, report that orbital pollution is getting increased significantly.<a href="#cite_note-iau-63">[62]</a><a href="#cite_note-64">[63]</a><a href="#cite_note-65">[64]</a><a href="#cite_note-66">[65]</a><a href="#cite_note-67">[66]</a> A report from the SATCON1 workshop in 2020 concluded that the effects of large satellite constellations can severely affect some astronomical research efforts and lists six ways to mitigate harm to astronomy.<a href="#cite_note-68">[67]</a><a href="#cite_note-69">[68]</a> The IAU is establishing a center (CPS) to coordinate or aggregate measures to mitigate such detrimental effects.<a href="#cite_note-70">[69]</a><a href="#cite_note-71">[70]</a><a href="#cite_note-72">[71]</a>

Some notable satellite failures that polluted and dispersed radioactive materials are <a href="/wiki/Kosmos_954" title="Kosmos 954">Kosmos 954</a>, <a href="/wiki/Kosmos_1402" title="Kosmos 1402">Kosmos 1402</a> and the <a href="/wiki/List_of_nuclear_power_systems_in_space" title="List of nuclear power systems in space">Transit 5-BN-3</a>.

Generally liability has been covered by the <a href="/wiki/Liability_Convention" class="mw-redirect" title="Liability Convention">Liability Convention</a>. Using wood as an alternative material has been posited in order to reduce pollution and debris from satellites that reenter the atmosphere.<a href="#cite_note-73">[72]</a>

Due to the low received signal strength of satellite transmissions, they are prone to <a href="/wiki/Radio_jamming" title="Radio jamming">jamming</a> by land-based transmitters. Such jamming is limited to the geographical area within the transmitter's range. GPS satellites are potential targets for jamming,<a href="#cite_note-74">[73]</a><a href="#cite_note-75">[74]</a> but satellite phone and television signals have also been subjected to jamming.<a href="#cite_note-76">[75]</a><a href="#cite_note-77">[76]</a>

Also, it is very easy to transmit a carrier radio signal to a geostationary satellite and thus interfere with the legitimate uses of the satellite's transponder. It is common for Earth stations to transmit at the wrong time or on the wrong frequency in commercial satellite space, and dual-illuminate the transponder, rendering the frequency unusable. Satellite operators now have sophisticated monitoring tools and methods that enable them to pinpoint the source of any carrier and manage the transponder space effectively. [<a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed">citation needed</a>]

See also

[<a href="/w/index.php?title=Satellite&action=edit&section=26" title="Edit section's source code: See also">edit source</a>]
  • <a href="/wiki/High-altitude_platform_station" title="High-altitude platform station">High-altitude platform station</a>
  • <a href="/wiki/Solar_aircraft" class="mw-redirect" title="Solar aircraft">Solar aircraft</a>
  • <a href="/wiki/Satellite_refuelling" title="Satellite refuelling">Satellite refuelling</a>

Notes

[<a href="/w/index.php?title=Satellite&action=edit&section=27" title="Edit section's source code: Notes">edit source</a>]
<style data-mw-deduplicate="TemplateStyles:r1217336898">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style>
  1. <a href="#cite_ref-1">^</a> to distinguish them from <a href="/wiki/Natural_satellites" class="mw-redirect" title="Natural satellites">natural satellites</a>.

References

[<a href="/w/index.php?title=Satellite&action=edit&section=28" title="Edit section's source code: References">edit source</a>]
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1217336898">
  1. <a href="#cite_ref-2">^</a> <style data-mw-deduplicate="TemplateStyles:r1215172403">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a{background-size:contain}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a{background-size:contain}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a{background-size:contain}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#2C882D;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911F}html.skin-theme-clientpref-night .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-night .mw-parser-output .cs1-hidden-error{color:#f8a397}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-os .mw-parser-output .cs1-hidden-error{color:#f8a397}html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911F}}</style><a rel="nofollow" class="external text" href="https://www.ucsusa.org/resources/satellite-database">"UCS Satellite Database"</a>. Union of Concerned Scientists. 1 May 2022.
  2. <a href="#cite_ref-3">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20000901224414/http://history.msfc.nasa.gov/rocketry/tl4.html">"Rockets in Science Fiction (Late 19th Century)"</a>. <a href="/wiki/Marshall_Space_Flight_Center" title="Marshall Space Flight Center">Marshall Space Flight Center</a>. Archived from <a rel="nofollow" class="external text" href="http://history.msfc.nasa.gov/rocketry/tl4.html">the original</a> on 1 September 2000. Retrieved 21 November 2008.
  3. <a href="#cite_ref-4">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Bleiler, Everett Franklin; Bleiler, Richard (1991). <a rel="nofollow" class="external text" href="https://archive.org/details/sciencefictionea0000blei">Science-fiction, the Early Years</a>. <a href="/wiki/Kent_State_University_Press" class="mw-redirect" title="Kent State University Press">Kent State University Press</a>. p. <a rel="nofollow" class="external text" href="https://archive.org/details/sciencefictionea0000blei/page/325">325</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-87338-416-2" title="Special:BookSources/978-0-87338-416-2">978-0-87338-416-2</a>.
  4. <a href="#cite_ref-5">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="http://www.sasmac.cn/portal/html/fc4f335929b0df0d0129b0e348f90003/_content/10_07/09/1278668367217.html">"Introduction to satellite"</a>. www.sasmac.cn. 2 September 2016. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160916064537/http://www.sasmac.cn/portal/html/fc4f335929b0df0d0129b0e348f90003/_content/10_07/09/1278668367217.html">Archived</a> from the original on 16 September 2016. Retrieved 25 May 2022.
  5. ^ <a href="#cite_ref-:0_6-0">a</a> <a href="#cite_ref-:0_6-1">b</a> <a href="#cite_ref-:0_6-2">c</a> <a href="#cite_ref-:0_6-3">d</a> <a href="#cite_ref-:0_6-4">e</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Pratt, Timothy; Allnutt, Jeremy E. (2019). Satellite Communications (3rd ed.). <a href="/wiki/John_Wiley_%26_Sons_Ltd" class="mw-redirect" title="John Wiley & Sons Ltd">John Wiley & Sons Ltd</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-119-48217-8" title="Special:BookSources/978-1-119-48217-8">978-1-119-48217-8</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/1098222848">1098222848</a>.
  6. <a href="#cite_ref-7">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.rand.org/pubs/special_memoranda/SM11827/">"Preliminary Design of an Experimental World-Circling Spaceship"</a>. <a href="/wiki/RAND" class="mw-redirect" title="RAND">RAND</a>. July 1946. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100615024409/http://rand.org/pubs/special_memoranda/SM11827/">Archived</a> from the original on 15 June 2010. Retrieved 6 March 2008.
  7. <a href="#cite_ref-8">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Rosenthal, Alfred (1968). Venture into Space: Early Years of Goddard Space Flight Center. NASA. p. 15.
  8. <a href="#cite_ref-9">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="http://hubblesite.org/the_telescope/hubble_essentials/lyman_spitzer.php">"Hubble Essentials: About Lyman Spitzer, Jr"</a>. Hubble Site. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181009202238/http://hubblesite.org/the_telescope/hubble_essentials/lyman_spitzer.php">Archived</a> from the original on 9 October 2018. Retrieved 16 October 2020.
  9. <a href="#cite_ref-10">^</a> R. R. Carhart, Scientific Uses for a Satellite Vehicle, Project RAND Research Memorandum. (Rand Corporation, Santa Monica) 12 February 1954.
  10. <a href="#cite_ref-11">^</a> 2. H. K. Kallmann and W. W. Kellogg, Scientific Use of an Artificial Satellite, Project RAND Research Memorandum. (Rand Corporation, Santa Monica) 8 June 1955.
  11. <a href="#cite_ref-nasa_animals_12-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Gray, Tara; Garber, Steve (2 August 2004). <a rel="nofollow" class="external text" href="https://history.nasa.gov/animals.html">"A Brief History of Animals in Space"</a>. <a href="/wiki/NASA" title="NASA">NASA</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20041011053912/https://history.nasa.gov/animals.html">Archived</a> from the original on 11 October 2004. Retrieved 12 July 2017.
  12. <a href="#cite_ref-13">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Chang, Alicia (30 January 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080201193510/http://www.sfgate.com/cgi-bin/article.cgi?f=%2Fn%2Fa%2F2008%2F01%2F30%2Fstate%2Fn151715S68.DTL">"50th anniversary of first U.S. satellite launch celebrated"</a>. San Francisco Chronicle. <a href="/wiki/Associated_Press" title="Associated Press">Associated Press</a>. Archived from <a rel="nofollow" class="external text" href="http://www.sfgate.com/cgi-bin/article.cgi?f=/n/a/2008/01/30/state/n151715S68.DTL">the original</a> on 1 February 2008.
  13. <a href="#cite_ref-Allen_14-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="http://www.nmspacemuseum.org/halloffame/detail.php?id=86">"James A. Van Allen"</a>. nmspacemuseum.org. New Mexico Museum of Space History. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180515112204/http://www.nmspacemuseum.org/halloffame/detail.php?id=86">Archived</a> from the original on 15 May 2018. Retrieved 14 May 2018.
  14. <a href="#cite_ref-Tatem_15-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Tatem, Andrew J.; Goetz, Scott J.; Hay, Simon I. (2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690060">"Fifty Years of Earth-observation Satellites"</a>. American Scientist. 96 (5): 390–398. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1511%2F2008.74.390">10.1511/2008.74.390</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690060">2690060</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19498953">19498953</a>.
  15. <a href="#cite_ref-16">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Portree, David S. F.; Loftus, Joseph P. Jr. (1999). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20000901071135/http://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-1999-208856.pdf">"Orbital Debris: A Chronology"</a> (PDF). <a href="/wiki/Lyndon_B._Johnson_Space_Center" class="mw-redirect" title="Lyndon B. Johnson Space Center">Lyndon B. Johnson Space Center</a>. p. 18. Archived from <a rel="nofollow" class="external text" href="http://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-1999-208856.pdf">the original</a> (PDF) on 1 September 2000. Retrieved 21 November 2008.
  16. <a href="#cite_ref-17">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Burleson, Daphne (2005). Space Programs Outside the United States. <a href="/wiki/McFarland_%26_Company" title="McFarland & Company">McFarland & Company</a>. p. 43. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7864-1852-7" title="Special:BookSources/978-0-7864-1852-7">978-0-7864-1852-7</a>.
  17. <a href="#cite_ref-18">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a href="/wiki/Mike_Gruntman" title="Mike Gruntman">Mike Gruntman</a> (2004). Blazing the Trail. <a href="/wiki/American_Institute_of_Aeronautics_and_Astronautics" title="American Institute of Aeronautics and Astronautics">American Institute of Aeronautics and Astronautics</a>. p. 426. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56347-705-8" title="Special:BookSources/978-1-56347-705-8">978-1-56347-705-8</a>.
  18. <a href="#cite_ref-19">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Harvey, Brian (2003). Europe's Space Programme. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer Science+Business Media</a>. p. 114. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-85233-722-3" title="Special:BookSources/978-1-85233-722-3">978-1-85233-722-3</a>.
  19. <a href="#cite_ref-20">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Welch, Rosanne; Lamphier, Peg A. (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aWGHDwAAQBAJ&q=largest+artificial+satellite&pg=RA2-PA126">Technical Innovation in American History: An Encyclopedia of Science and Technology [3 volumes]</a>. ABC-CLIO. p. 126. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-61069-094-2" title="Special:BookSources/978-1-61069-094-2">978-1-61069-094-2</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210214004816/https://books.google.com/books?id=aWGHDwAAQBAJ&q=largest+artificial+satellite&pg=RA2-PA126">Archived</a> from the original on 14 February 2021. Retrieved 4 October 2020.
  20. <a href="#cite_ref-21">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Slejko, EA; Gregorio, A; Lughi, V (2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0273117720308383">"Material selection for a CubeSat structural bus complying with debris mitigation"</a>. Advances in Space Research. 67 (5): 1468–1476. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021AdSpR..67.1468S">2021AdSpR..67.1468S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.asr.2020.11.037">10.1016/j.asr.2020.11.037</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233841294">233841294</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220603044215/https://www.sciencedirect.com/science/article/abs/pii/S0273117720308383">Archived</a> from the original on 3 June 2022. Retrieved 3 June 2022.
  21. <a href="#cite_ref-tasia202104_22-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Garrity, John; Husar, Arndt (April 2021). <a rel="nofollow" class="external text" href="https://think-asia.org/handle/11540/13626">"Digital Connectivity and Low Earth Orbit Satellite Constellations: Opportunities for Asia and the Pacific"</a>. think-asia.org. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220721104450/https://think-asia.org/handle/11540/13626">Archived</a> from the original on 21 July 2022. Retrieved 3 June 2022.
  22. <a href="#cite_ref-23">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Buchholz, Katharina (4 May 2023). <a rel="nofollow" class="external text" href="https://www.statista.com/chart/17107/countries-with-the-most-satellites-in-space/">"The Countries with the Most Satellites in Space"</a>. statista. Retrieved 11 November 2023.
  23. <a href="#cite_ref-24">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Cairns, Rebecca (11 November 2023). <a rel="nofollow" class="external text" href="https://edition.cnn.com/2023/11/07/asia/japan-wooden-satellite-scn-spc/index.html">"Japanese scientists want to send a wooden satellite into space"</a>. CNN. Retrieved 11 November 2023.
  24. <a href="#cite_ref-25">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.americanelements.com/space-industry.html">"Space - American Elements Assists NASA in Development of Ultra White Coating for Satellite Applications"</a>. American Elements. Retrieved 6 April 2023.
  25. <a href="#cite_ref-26">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Andy (18 August 2021). <a rel="nofollow" class="external text" href="https://www.pixalytics.com/eo-sats-2021/">"How many Earth observation satellites are orbiting the planet in 2021?"</a>. Pixalytics. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220721104450/https://www.pixalytics.com/eo-sats-2021/">Archived</a> from the original on 21 July 2022. Retrieved 25 May 2022.
  26. <a href="#cite_ref-27">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080819121047/http://earthobservatory.nasa.gov/Drought/">"Drought and Vegetation Monitoring"</a>. Earth Observatory. NASA. Archived from <a rel="nofollow" class="external text" href="http://earthobservatory.nasa.gov/Drought/">the original</a> on 19 August 2008. Retrieved 4 July 2008. <img alt="Public Domain" src="//upload.wikimedia.org/wikipedia/en/thumb/6/62/PD-icon.svg/12px-PD-icon.svg.png" decoding="async" width="12" height="12" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/6/62/PD-icon.svg/18px-PD-icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/6/62/PD-icon.svg/24px-PD-icon.svg.png 2x" data-file-width="196" data-file-height="196" /> This article incorporates text from this source, which is in the <a href="/wiki/Public_domain" title="Public domain">public domain</a>.
  27. <a href="#cite_ref-28">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Labrador, Virgil (19 February 2015). <a rel="nofollow" class="external text" href="https://www.britannica.com/EBchecked/topic/524891/satellite-communication">"satellite communication"</a>. Britannica.com. Retrieved 10 February 2016.
  28. <a href="#cite_ref-29">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="http://satellites.spacesim.org/english/function/communic/index.html">"Satellites - Communication Satellites"</a>. Satellites.spacesim.org. Retrieved 10 February 2016.
  29. <a href="#cite_ref-Communications_satellite_aerospace.org_30-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150905170449/http://www.aerospace.org/2013/12/12/military-satellite-communications-fundamentals/">"Military Satellite Communications Fundamentals | The Aerospace Corporation"</a>. Aerospace. 1 April 2010. Archived from <a rel="nofollow" class="external text" href="http://www.aerospace.org/2013/12/12/military-satellite-communications-fundamentals/">the original</a> on 5 September 2015. Retrieved 10 February 2016.
  30. <a href="#cite_ref-31">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Morrill, Dan (13 April 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080320084037/http://blogs.ittoolbox.com/security/dmorrill/archives/hack-a-satellite-while-it-is-in-orbit-15690">"Hack a Satellite while it is in orbit"</a>. <a href="/wiki/ITtoolbox" class="mw-redirect" title="ITtoolbox">ITtoolbox</a> Blogs. Archived from <a rel="nofollow" class="external text" href="http://blogs.ittoolbox.com/security/dmorrill/archives/hack-a-satellite-while-it-is-in-orbit-15690">the original</a> on 20 March 2008. Retrieved 25 March 2008.
  31. <a href="#cite_ref-32">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://archive.today/20120719005250/http://www.accessmylibrary.com/coms2/summary_0286-14557996_ITM">"AsiaSat accuses Falungong of hacking satellite signals"</a>. <a href="/wiki/Press_Trust_of_India" title="Press Trust of India">Press Trust of India</a>. 22 November 2004. Archived from <a rel="nofollow" class="external text" href="http://www.accessmylibrary.com/coms2/summary_0286-5205866_ITM">the original</a> on 19 July 2012. Retrieved 19 May 2008 – via AccessMyLibrary.
  32. ^ <a href="#cite_ref-asat_33-0">a</a> <a href="#cite_ref-asat_33-1">b</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Broad, William J.; Sanger, David E. (18 January 2007). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2007/01/18/world/asia/18cnd-china.html">"China Tests Anti-Satellite Weapon, Unnerving U.S."</a>. <a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170417190320/http://www.nytimes.com/2007/01/18/world/asia/18cnd-china.html">Archived</a> from the original on 17 April 2017. Retrieved 23 February 2017.
  33. <a href="#cite_ref-34">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080401054054/http://www.popularmechanics.com/blogs/science_news/4251430.html">"Navy Missile Successful as Spy Satellite Is Shot Down (With Video)"</a>. <a href="/wiki/Popular_Mechanics" title="Popular Mechanics">Popular Mechanics</a>. 21 February 2008. Archived from <a rel="nofollow" class="external text" href="http://www.popularmechanics.com/blogs/science_news/4251430.html">the original</a> on 1 April 2008. Retrieved 25 March 2008.
  34. <a href="#cite_ref-35">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.theweek.in/news/india/2019/03/27/india-test-anti-satellite-weapon-modi.html">"India successfully tests anti-satellite weapon: Modi"</a>. The Week. 27 March 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210712020749/https://www.theweek.in/news/india/2019/03/27/india-test-anti-satellite-weapon-modi.html">Archived</a> from the original on 12 July 2021. Retrieved 27 March 2019.
  35. <a href="#cite_ref-36">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Vasani, Harsh (14 June 2016). <a rel="nofollow" class="external text" href="https://thediplomat.com/2016/06/indias-anti-satellite-weapons/">"India's Anti-Satellite Weapons"</a>. The Diplomat. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180101131652/https://thediplomat.com/2016/06/indias-anti-satellite-weapons/">Archived</a> from the original on 1 January 2018. Retrieved 27 March 2019.
  36. ^ <a href="#cite_ref-schulz_37-0">a</a> <a href="#cite_ref-schulz_37-1">b</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Schulz, Leonard; Glassmeier, Karl-Heinz (2021). "On the anthropogenic and natural injection of matter into Earth's atmosphere". Advances in Space Research. 67 (3): 1002–1025. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.13032">2008.13032</a>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021AdSpR..67.1002S">2021AdSpR..67.1002S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.asr.2020.10.036">10.1016/j.asr.2020.10.036</a>.
  37. <a href="#cite_ref-38">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Farjana, Shahjadi Hisan; Huda, Nazmul; Mahmud, M.A. Parvez (2019). "Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment". Science of the Total Environment. 663: 958–970. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019ScTEn.663..958F">2019ScTEn.663..958F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scitotenv.2019.01.400">10.1016/j.scitotenv.2019.01.400</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30739864">30739864</a>.
  38. ^ <a href="#cite_ref-Gaston_39-0">a</a> <a href="#cite_ref-Gaston_39-1">b</a> <a href="#cite_ref-Gaston_39-2">c</a> <a href="#cite_ref-Gaston_39-3">d</a> <a href="#cite_ref-Gaston_39-4">e</a> <a href="#cite_ref-Gaston_39-5">f</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Gaston, Kevin; Anderson, Karen; Shutler, Jamie; Brewin, Robert; Yan, Xiaoyu (2023). "Environmental impacts of increasing numbers of artificial space objects". Frontiers in Ecology and the Environment. 21 (6): 289–296. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023FrEE...21..289G">2023FrEE...21..289G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Ffee.2624">10.1002/fee.2624</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10871%2F132935">10871/132935</a>.
  39. <a href="#cite_ref-40">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Norgate, Terry; Haque, Nawshad (2012). "Using life cycle assessment to evaluate some environmental impacts of gold production". Journal of Cleaner Production. 29: 53–63. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JCPro..29...53N">2012JCPro..29...53N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jclepro.2012.01.042">10.1016/j.jclepro.2012.01.042</a>.
  40. <a href="#cite_ref-41">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Flexer, Victoria; Baspineiro, Celso; Galli, Claudia (2018). "Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing". Science of the Total Environment. 639: 1188–1204. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018ScTEn.639.1188F">2018ScTEn.639.1188F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scitotenv.2018.05.223">10.1016/j.scitotenv.2018.05.223</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/11336%2F91034">11336/91034</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29929287">29929287</a>.
  41. <a href="#cite_ref-42">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.esa.int/Enabling_Support/Space_Transportation/Launch_vehicles/Boosters_EAP">"Boosters (EAP)"</a>. The European Space Agency. Retrieved 10 April 2024.
  42. ^ <a href="#cite_ref-Durrieu_43-0">a</a> <a href="#cite_ref-Durrieu_43-1">b</a> <a href="#cite_ref-Durrieu_43-2">c</a> <a href="#cite_ref-Durrieu_43-3">d</a> <a href="#cite_ref-Durrieu_43-4">e</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Durrieu, Sylvie; Nelson, Ross (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.spacepol.2013.07.003">"Earth observation from space – The issue of environmental sustainability"</a>. Space Policy. 29 (4): 238–250. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013SpPol..29..238D">2013SpPol..29..238D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.spacepol.2013.07.003">10.1016/j.spacepol.2013.07.003</a>.
  43. <a href="#cite_ref-44">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Dallas, J.A.; Raval, S.; Gaitan, J.P.A.; Saydam, S.; Dempster, A.G. (2020). "The environmental impact of emissions from space launches: A comprehensive review". Journal of Cleaner Production. 255. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020JCPro.25520209D">2020JCPro.25520209D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jclepro.2020.120209">10.1016/j.jclepro.2020.120209</a>.
  44. <a href="#cite_ref-45">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Miraux, Lois (2022). "Environmental limits to the space sector's growth". Science of the Total Environment. 806 (4). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022ScTEn.80650862M">2022ScTEn.80650862M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scitotenv.2021.150862">10.1016/j.scitotenv.2021.150862</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34637875">34637875</a>.
  45. ^ <a href="#cite_ref-Ryan_46-0">a</a> <a href="#cite_ref-Ryan_46-1">b</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Ryan, Robert; Marais, Eloise; Balhatchet, Chloe; Eastham, Sebastian (2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287058">"Impact of Rocket Launch and Space Debris Air Pollutant Emissions on Stratospheric Ozone and Global Climate"</a>. Earth's Future. 10 (6): e2021EF002612. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022EaFut..1002612R">2022EaFut..1002612R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2021EF002612">10.1029/2021EF002612</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287058">9287058</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35865359">35865359</a>.
  46. <a href="#cite_ref-Ross_47-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Ross, Martin; Toohey, Darin; Peinemann, Manfred; Ross, Patrick (2009). "Limits on the Space Launch Market Related to Stratospheric Ozone Depletion". Astropolitics. 7 (1): 50–82. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009AstPo...7...50R">2009AstPo...7...50R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14777620902768867">10.1080/14777620902768867</a>.
  47. <a href="#cite_ref-48">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Maloney, Christopher; Portmann, Robert; Ross, Martin; Rosenlof, Karen (2022). <a rel="nofollow" class="external text" href="https://repository.library.noaa.gov/view/noaa/53971">"The Climate and Ozone Impacts of Black Carbon Emissions From Global Rocket Launches"</a>. JGR Atmospheres. 127 (12). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022JGRD..12736373M">2022JGRD..12736373M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2F2021JD036373">10.1029/2021JD036373</a>.
  48. <a href="#cite_ref-49">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">de Groh, Kim; Banks, Bruce; Miller, Sharon; Dever, Joyce (2018). "Chapter 28 - Degradation of Spacecraft Materials". Handbook of Environmental Degreadation: 601–645. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-323-52472-8.00029-0">10.1016/B978-0-323-52472-8.00029-0</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2060%2F20040112017">2060/20040112017</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-323-52472-8" title="Special:BookSources/978-0-323-52472-8">978-0-323-52472-8</a>.
  49. <a href="#cite_ref-50">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Kocifaj, M.; Kundracik, F.; Barentine, J.C.; Bara, S. (2021). "The proliferation of space objects is a rapidly increasing source of artificial night sky brightness". Monthly Notices of the Royal Astronomical Society: Letters. 504 (1): L40–L44. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.17125">2103.17125</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnrasl%2Fslab030">10.1093/mnrasl/slab030</a>.
  50. <a href="#cite_ref-51">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Sutherland, W.J.; Atkinson, P.W.; Broad, S.; Brown, S.; Clout, M.; Dias, M.P.; Dicks, L.V.; Doran, H.; Fleishman, E.; Garratt, E.L.; Gaston, K.J.; Hughes, A.C.; Le Roux, X.; Lickorish, F.A.; Maggs, L.; Palardy, J.E.; Peck, L.S.; Pettorelli, N.; Pretty, J.; Spalding, M.D.; Tonneijck, F.H.; Walpole, M.; Watson, J.E.M; Wentworth, J.; Thornton, A. (2021). "A 2021 Horizon Scan of Emerging Global Biological Conservation Issues". Trends in Ecology & Evolution. 36 (1): 87–97. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021TEcoE..36...87S">2021TEcoE..36...87S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tree.2020.10.014">10.1016/j.tree.2020.10.014</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10400.12%2F8056">10400.12/8056</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33213887">33213887</a>.
  51. <a href="#cite_ref-52">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Foster, J.; Smolka, J.; Nilsson, D.E.; Dacke, M. (2018). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805938">"How animals follow the stars"</a>. Proceedings of the Royal Society B: Biological Sciences. 285 (1871). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspb.2017.2322">10.1098/rspb.2017.2322</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805938">5805938</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29367394">29367394</a>.
  52. <a href="#cite_ref-53">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Hamacher, Duane; Barsa, John; Passi, Segar; Tapim, Alo (2019). "Indigenous use of stellar scintillation to predict weather and seasonal change". Proceedings of the Royal Society of Victoria. 131 (1): 24. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/1903.01060">1903.01060</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1071%2FRS19003">10.1071/RS19003</a>.
  53. <a href="#cite_ref-54">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Miraux, Lois; Willson, Andrew; Calabuig, Guillermo (2022). <a rel="nofollow" class="external text" href="https://strathprints.strath.ac.uk/82154/1/Miraux_etal_AA_2022_Environmental_sustainability_of_future_proposed_space_activities.pdf">"Environmental sustainability of future proposed space activities"</a> (PDF). Acta Astronautica. 200 (1): 329–346. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022AcAau.200..329M">2022AcAau.200..329M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.actaastro.2022.07.034">10.1016/j.actaastro.2022.07.034</a>.
  54. ^ <a href="#cite_ref-10.1038/s41550-022-01655-6_55-0">a</a> <a href="#cite_ref-10.1038/s41550-022-01655-6_55-1">b</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Lawrence, Andy; Rawls, Meredith L.; Jah, Moriba; Boley, Aaron; Di Vruno, Federico; Garrington, Simon; Kramer, Michael; Lawler, Samantha; Lowenthal, James; McDowell, Jonathan; McCaughrean, Mark (April 2022). "The case for space environmentalism". Nature Astronomy. 6 (4): 428–435. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/2204.10025">2204.10025</a>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022NatAs...6..428L">2022NatAs...6..428L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41550-022-01655-6">10.1038/s41550-022-01655-6</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/2397-3366">2397-3366</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248300127">248300127</a>.
  55. <a href="#cite_ref-sp1_56-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Seidler, Christoph (22 April 2017). <a rel="nofollow" class="external text" href="http://www.spiegel.de/wissenschaft/weltall/weltraumschrott-esa-tagung-in-darmstadt-ohne-ergebnisse-a-1144174.html">"Problem Weltraumschrott: Die kosmische Müllkippe – Wissenschaft"</a>. Der Spiegel. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170423013706/http://www.spiegel.de/wissenschaft/weltall/weltraumschrott-esa-tagung-in-darmstadt-ohne-ergebnisse-a-1144174.html">Archived</a> from the original on 23 April 2017. Retrieved 22 April 2017.
  56. <a href="#cite_ref-57">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Garcia, Mark (13 April 2015). <a rel="nofollow" class="external text" href="https://www.nasa.gov/mission_pages/station/news/orbital_debris.html">"Space Debris and Human Spacecraft"</a>. NASA. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220322131144/https://www.nasa.gov/mission_pages/station/news/orbital_debris.html">Archived</a> from the original on 22 March 2022. Retrieved 22 March 2022.
  57. ^ <a href="#cite_ref-physUT_58-0">a</a> <a href="#cite_ref-physUT_58-1">b</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Williams, Matt. <a rel="nofollow" class="external text" href="https://phys.org/news/2022-03-sustainable-space-environment.html">"What would a sustainable space environment look like?"</a>. phys.org. Universe Today. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220322160515/https://phys.org/news/2022-03-sustainable-space-environment.html">Archived</a> from the original on 22 March 2022. Retrieved 22 March 2022.
  58. <a href="#cite_ref-59">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://spacenews.com/chinese-official-calls-for-protection-of-space-assets-international-coordination-mechanisms/">"Chinese official calls for protection of space assets, international coordination mechanisms"</a>. SpaceNews. 10 March 2022. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220721104448/https://spacenews.com/chinese-official-calls-for-protection-of-space-assets-international-coordination-mechanisms/">Archived</a> from the original on 21 July 2022. Retrieved 22 March 2022.
  59. <a href="#cite_ref-60">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.esa.int/Enabling_Support/Space_Engineering_Technology/The_Kessler_Effect_and_how_to_stop_it">"The Kessler Effect and how to stop it"</a>. ESA. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220322160515/https://www.esa.int/Enabling_Support/Space_Engineering_Technology/The_Kessler_Effect_and_how_to_stop_it">Archived</a> from the original on 22 March 2022. Retrieved 22 March 2022.
  60. <a href="#cite_ref-61">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Wattles, Jackie. <a rel="nofollow" class="external text" href="https://edition.cnn.com/2020/10/07/business/rocket-lab-debris-launch-traffic-scn/index.html">"Space is becoming too crowded, Rocket Lab CEO warns"</a>. CNN. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220526100211/https://edition.cnn.com/2020/10/07/business/rocket-lab-debris-launch-traffic-scn/index.html">Archived</a> from the original on 26 May 2022. Retrieved 26 May 2022.
  61. <a href="#cite_ref-62">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.independent.co.uk/tech/space-junk-collision-satellite-debris-iss-nasa-b1074079.html">"What happens if two bits of space junk actually collide?"</a>. The Independent. 16 October 2020. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220526100210/https://www.independent.co.uk/tech/space-junk-collision-satellite-debris-iss-nasa-b1074079.html">Archived</a> from the original on 26 May 2022. Retrieved 26 May 2022.
  62. <a href="#cite_ref-iau_63-0">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.iau.org/news/announcements/detail/ann19035/">"IAU's statement on satellite constellations"</a>. International Astronomical Union. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200527073625/https://www.iau.org/news/announcements/detail/ann19035/">Archived</a> from the original on 27 May 2020. Retrieved 3 June 2019.
  63. <a href="#cite_ref-64">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="http://www.astronomy.com/news/2019/06/light-pollution-from-satellites-will-get-worse-but-how-much">"Light pollution from satellites will get worse. But how much?"</a>. astronomy.com. 14 June 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210428172415/https://astronomy.com/news/2019/06/light-pollution-from-satellites-will-get-worse-but-how-much">Archived</a> from the original on 28 April 2021. Retrieved 7 November 2019.
  64. <a href="#cite_ref-65">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Hainaut, Olivier R.; Williams, Andrew P. (1 April 2020). <a rel="nofollow" class="external text" href="https://www.aanda.org/articles/aa/full_html/2020/04/aa37501-20/aa37501-20.html">"Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains"</a>. Astronomy & Astrophysics. 636: A121. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.01992">2003.01992</a>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020A&A...636A.121H">2020A&A...636A.121H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2F0004-6361%2F202037501">10.1051/0004-6361/202037501</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/0004-6361">0004-6361</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201219192027/https://www.aanda.org/articles/aa/full_html/2020/04/aa37501-20/aa37501-20.html">Archived</a> from the original on 19 December 2020. Retrieved 22 November 2020.
  65. <a href="#cite_ref-66">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Mróz, Przemek; Otarola, Angel; Prince, Thomas A.; Dekany, Richard; Duev, Dmitry A.; Graham, Matthew J.; Groom, Steven L.; Masci, Frank J.; Medford, Michael S. (1 January 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Fac470a">"Impact of the SpaceX Starlink Satellites on the Zwicky Transient Facility Survey Observations"</a>. The Astrophysical Journal Letters. 924 (2): L30. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a rel="nofollow" class="external text" href="https://arxiv.org/abs/2201.05343">2201.05343</a>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022ApJ...924L..30M">2022ApJ...924L..30M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3847%2F2041-8213%2Fac470a">10.3847/2041-8213/ac470a</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/2041-8205">2041-8205</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245986575">245986575</a>.
  66. <a href="#cite_ref-67">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://aas.org/posts/advocacy/2021/08/impacts-large-satellite-constellations-astronomy-live-updates">"Impacts of Large Satellite Constellations on Astronomy: Live Updates | American Astronomical Society"</a>. <a href="/wiki/American_Astronomical_Society" title="American Astronomical Society">American Astronomical Society</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220419152431/https://aas.org/posts/advocacy/2021/08/impacts-large-satellite-constellations-astronomy-live-updates">Archived</a> from the original on 19 April 2022. Retrieved 22 March 2022.
  67. <a href="#cite_ref-68">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Zhang, Emily. <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/spacexs-dark-satellites-are-still-too-bright-for-astronomers/">"SpaceX's Dark Satellites Are Still Too Bright for Astronomers"</a>. Scientific American. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210102065559/https://www.scientificamerican.com/article/spacexs-dark-satellites-are-still-too-bright-for-astronomers/">Archived</a> from the original on 2 January 2021. Retrieved 16 September 2020.
  68. <a href="#cite_ref-69">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://aas.org/press/report-offers-roadmap-mitigate-effects-large-satellite-constellations-astronomy">"Report Offers Roadmap to Mitigate Effects of Large Satellite Constellations on Astronomy | American Astronomical Society"</a>. aas.org. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200924025446/https://aas.org/press/report-offers-roadmap-mitigate-effects-large-satellite-constellations-astronomy">Archived</a> from the original on 24 September 2020. Retrieved 16 September 2020.
  69. <a href="#cite_ref-70">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.bbc.com/news/science-environment-60262100">"Astronomers stand up to satellite mega-constellations"</a>. BBC News. 4 February 2022. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220310041256/https://www.bbc.com/news/science-environment-60262100">Archived</a> from the original on 10 March 2022. Retrieved 10 March 2022.
  70. <a href="#cite_ref-71">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.mpifr-bonn.mpg.de/announcements/2022/1">"Protection of the Dark and Quiet Sky from Satellite Constellation Interference"</a>. Max Planck Institute for Radio Astronomy, Bonn. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220315090741/https://www.mpifr-bonn.mpg.de/announcements/2022/1">Archived</a> from the original on 15 March 2022. Retrieved 10 March 2022.
  71. <a href="#cite_ref-72">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="https://www.iau.org/science/scientific_bodies/centres/CPS/">"International Astronomical Union | IAU"</a>. www.iau.org. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220313084016/https://www.iau.org/science/scientific_bodies/centres/CPS/">Archived</a> from the original on 13 March 2022. Retrieved 10 March 2022.
  72. <a href="#cite_ref-73">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Harper, Justin (29 December 2020). <a rel="nofollow" class="external text" href="https://www.bbc.co.uk/news/business-55463366">"Japan developing wooden satellites to cut space junk"</a>. bbc.co.uk. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201229014751/https://www.bbc.co.uk/news/business-55463366">Archived</a> from the original on 29 December 2020. Retrieved 29 December 2020.
  73. <a href="#cite_ref-74">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Singer, Jeremy (2003). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080526204956/http://www.space.com/news/gps_iraq_030325.html">"U.S.-Led Forces Destroy GPS Jamming Systems in Iraq"</a>. <a href="/wiki/Space.com" title="Space.com">Space.com</a>. Archived from <a rel="nofollow" class="external text" href="http://www.space.com/news/gps_iraq_030325.html">the original</a> on 26 May 2008. Retrieved 25 March 2008.
  74. <a href="#cite_ref-75">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Brewin, Bob (2003). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080422164053/http://computerworld.com/securitytopics/security/story/0%2C10801%2C77702%2C00.html">"Homemade GPS jammers raise concerns"</a>. <a href="/wiki/Computerworld" title="Computerworld">Computerworld</a>. Archived from <a rel="nofollow" class="external text" href="http://www.computerworld.com/securitytopics/security/story/0,10801,77702,00.html">the original</a> on 22 April 2008. Retrieved 25 March 2008.
  75. <a href="#cite_ref-76">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><a rel="nofollow" class="external text" href="http://www.iranfocus.com/modules/news/article.php?storyid=2852">"Iran government jamming exile satellite TV"</a>. <a href="/w/index.php?title=Iran_Focus&action=edit&redlink=1" class="new" title="Iran Focus (page does not exist)">Iran Focus</a>. 2008. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060114173408/http://www.iranfocus.com/modules/news/article.php?storyid=2852">Archived</a> from the original on 14 January 2006. Retrieved 25 March 2008.
  76. <a href="#cite_ref-77">^</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403">Selding, Peter de (2007). <a rel="nofollow" class="external text" href="http://www.space.com/spacenews/businessmonday_070409.html">"Libya Pinpointed as Source of Months-Long Satellite Jamming in 2006"</a>. <a href="/wiki/Space.com" title="Space.com">Space.com</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080429193429/http://www.space.com/spacenews/businessmonday_070409.html">Archived</a> from the original on 29 April 2008.
[<a href="/w/index.php?title=Satellite&action=edit&section=29" title="Edit section's source code: External links">edit source</a>]
<style data-mw-deduplicate="TemplateStyles:r1217611005">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1217611005"> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style>