Jump to content

Talk:Preon star

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 98.207.130.36 (talk) at 00:12, 24 July 2009 (Notability). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconAstronomy: Astronomical objects Redirect‑class
WikiProject iconThis redirect is within the scope of WikiProject Astronomy, which collaborates on articles related to Astronomy on Wikipedia.
RedirectThis redirect does not require a rating on Wikipedia's content assessment scale.
Taskforce icon
This redirect is supported by WikiProject Astronomical objects, which collaborates on articles related to astronomical objects.

‹See TfM›

WikiProject iconPhysics Redirect‑class Low‑importance
WikiProject iconThis redirect is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
RedirectThis redirect does not require a rating on Wikipedia's content assessment scale.
LowThis redirect has been rated as Low-importance on the project's importance scale.

Notability

Sorry, but I just found a really obvious problem here: the article currently says that a preon star the mass of the earth would be the size of a tennis ball, but isn't the Schwarzschild radius for an earth mass about 4.5 centimeters? there's no way that the preon star could be smaller than that. 98.207.130.36 (talk) 00:12, 24 July 2009 (UTC)[reply]

Sanity check: Is there anything published in a bona-fide peer-reviewed journal about "preon stars"? "Letters" journals tend to have lower standards, though I'd have to check with the local physicists about Phys. Lett. B. Eprints and similar are next to worthless as science references (you wouldn't believe how much crank material has made it into arxiv). If references can be found, I'm all for keeping this article, but models involving preons were only around briefly, and fell out of favour when experimental data started conflicting with them. --Christopher Thomas 07:10, 24 February 2006 (UTC)[reply]

Actually there are several models for preons and although a few of them have fallen out of favor because of conflicts with experimental data, not all have. Since we can not measure any of the qualities of the preon directly the articles on preon stars have taken this ambiguity into account. I actually had an in depth discussion with Johan Hansson, the particle physicist working on the project, last week about this and he told me that this ambiguity was itself what made preon stars interesting. If they exist preon stars will cause significant gravitational lensing and are detectable now, or very soon. Another method of detection that they are looking into is due to gravitational waves created by (hypothetical) binary preon stars. These waves would operate at an extremely high frequency (much higher frequency than anything besides, perhaps, a binary black hole), due to the Conservation of Angular Momentum.

Why Care? The interesting thing about preon stars is that if they exist and are detected thy may help to solve three of the major puzzles of modern physics: 1. Dark Matter. If preon stars exist, then they may contribute to the elusive Dark Matter mystery. 2. The So Called 'Oh My God' Particles. Or the Hyper High energy particles that we have evidence of... Essentially preon stars, if they exist, could radiate matter/antimatter pairs, since they are spinning at incredible velocities and are spectacular dense. And Finally, The Quark. Why are Strange/Charm and Top/Bottom Quarks unstable? How can something be unstable and Fundamental? If Preons exist, then the answer is that they are not fundamental. If detected, preon stars could give theoretical physicists a hint of coming attractions and allow them to calculate some very important features about preons.

Additionally, Dr. Hansson was talking about the development of preon stars and was very clear that the name is a misnomer. Preon stars are not massive enough to have ever been stars. The most likely explanation is that they formed from hyper-dense clumps of mass that occured very soon after the big bang. —Preceding unsigned comment added by Moto Perpetuo (talkcontribs) 05:33, 9 March 2008 (UTC)[reply]

Disregarding the notability and the reliability for now (don't confuse please!), the second source, being a PDF composed of four papers, arguing for: 1. black holes cannot exist, because it violates too many quantum principles, 2. strange-quark-plasma should be stable and the strangeness a prerequisite for unconfined quark matter, 3. strange-quark-plasma is more stable than hyperonic matter, 4. iff (a great if indeed!) there are preons (subquark particles), then "preon stars" do exist, but those "stars" must have been created at Big Bang, probably by a strange-quark-plasma some way, 5. "preon stars" are great candidates for the missing mass, 6. preon stars are lighter than white dwarfs and neutron stars. Since I'm a computer scientist, I cannot estimate reliability nor notability. Said: Rursus 22:31, 23 June 2008 (UTC)[reply]