Jump to content

Hydraulic brake

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 64.114.222.6 (talk) at 22:06, 13 January 2015 (stupid crap). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing ethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism

History

Fred Duesenberg originated hydraulic brakes on his 1914 racing cars and Duesenberg was the first automotive marque to use the technology on a passenger car in 1921. This braking system could have earned him a fortune if he had patented it. In 1918 Malcolm Lougheed (who later changed the spelling of his name to Lockheed) developed a hydraulic brake system.[1]

Construction

The most common arrangement of hydraulic brakes for passenger vehicles, motorcycles, scooters, and mopeds, consists of the following:

  • Brake pedal or lever
  • A pushrod (also called an actuating rod)
  • A master cylinder assembly containing a piston assembly (made up of either one or two pistons, a return spring, a series of gaskets/ O-rings and a fluid reservoir)
  • Reinforced hydraulic lines
  • Brake caliper assembly usually consisting of one or two hollow aluminum or chrome-plated steel pistons (called caliper pistons), a set of thermally conductive brake pads and a rotor (also called a brake disc) or drum attached to an axle.

The system is usually filled with a glycol-ether based brake fluid (other fluids may also be used).

At one time, passenger vehicles commonly employed drum brakes on all four wheels. Later, disc brakes were used for the front and drum brakes for the rear. However disc brakes have shown better heat dissipation and greater resistance to 'fading' and are therefore generally safer than drum brakes. So four-wheel disc brakes have become increasingly popular, replacing drums on all but the most basic vehicles. Many two-wheel vehicle designs, however, continue to employ a drum brake for the rear wheel.

The following description uses the terminology for and configuration of a simple disc brake.

System operation

A schematic illustrating the major components of a hydraulic disc brake system.

In a hydraulic brake system, when the brake pedal is pressed, a pushrod exerts force on the piston(s) in the master cylinder, causing fluid from the brake fluid reservoir to flow into a pressure chamber through a compensating port. This results in an increase in the pressure of the entire hydraulic system, forcing fluid through the hydraulic lines toward one or more calipers where it acts upon one or two caliper pistons sealed by one or more seated O-rings (which prevent leakage of the fluid).

The brake caliper pistons then apply force to the brake pads, pushing them against the spinning rotor, and the friction between the pads and the rotor causes a braking torque to be generated, slowing the vehicle. Heat generated by this friction is either dissipated through vents and channels in the rotor or is conducted through the pads, which are made of specialized heat-tolerant materials such as kevlar or sintered glass.

Subsequent release of the brake pedal/lever allows the spring(s) in the master cylinder assembly to return the master piston(s) back into position. This action first relieves the hydraulic pressure on the caliper, then applies suction to the brake piston in the caliper assembly, moving it back into its housing and allowing the brake pads to release the rotor.

The hydraulic braking system is designed as a closed system: unless there is a leak in the system, none of the brake fluid enters or leaves it, nor does the fluid get consumed through use.

Component specifics

(For typical light duty automotive braking systems)


In a four-wheel car, the FMVSS Standard 105, 1976; requires the master cylinder is divided internally into two sections, each of which pressurizes a separate hydraulic circuit. Each section supplies pressure to one circuit. The combination is known as a dual master cylinder. Passenger vehicles typically have either a front/rear split brake system or a diagonal split brake system (the master cylinder in a motorcycle or scooter may only pressurize a single unit, which will be the front brake).

A front/rear split system uses one master cylinder section to pressurize the front caliper pistons and the other section to pressurize the rear caliper pistons. A split circuit braking system is now required by law in most countries for safety reasons; if one circuit fails, the other circuit can stop the vehicle.

Diagonal split systems were used initially on American Motors automobiles in the 1967 production year. The right front and left rear are served by one actuating piston while the left front and the right rear are served, exclusively, by a second actuating piston (both pistons pressurize their respective coupled lines from a single foot pedal). If either circuit fails, the other, with at least one front wheel braking (the front brakes provide most of the speed reduction) remains intact to stop the mechanically-damaged vehicle. By the 1970s, diagonally split systems had become common among automobiles sold in the United States. This system was developed with front wheel drive cars suspension design to maintain better control and stability during a system failure.

The diameter and length of the master cylinder has a significant effect on the performance of the brake system. A larger diameter master cylinder delivers more hydraulic fluid to the caliper pistons, yet requires more brake pedal force and less brake pedal stroke to achieve a given deceleration. A smaller diameter master cylinder has the opposite effect.

A master cylinder may also use differing diameters between the two sections to allow for increased fluid volume to one set of caliper pistons or the other.

A proportioning valve may be used to reduce the pressure to the rear brakes.

Power brakes

The vacuum booster or vacuum servo is used in most modern hydraulic brake systems which contain four wheels. The vacuum booster is attached between the master cylinder and the brake pedal and multiplies the braking force applied by the driver. These units consist of a hollow housing with a movable rubber diaphragm across the center, creating two chambers. When attached to the low-pressure portion of the throttle body or intake manifold of the engine, the pressure in both chambers of the unit is lowered. The equilibrium created by the low pressure in both chambers keeps the diaphragm from moving until the brake pedal is depressed. A return spring keeps the diaphragm in the starting position until the brake pedal is applied. When the brake pedal is applied, the movement opens an air valve which lets in atmospheric pressure air to one chamber of the booster. Since the pressure becomes higher in one chamber, the diaphragm moves toward the lower pressure chamber with a force created by the area of the diaphragm and the differential pressure. This force, in addition to the driver's foot force, pushes on the master cylinder piston. A relatively small diameter booster unit is required; for a very conservative 50% manifold vacuum, an assisting force of about 1500 N (200n) is produced by a 20 cm diaphragm with an area of 0.03 square meters. The diaphragm will stop moving when the forces on both sides of the chamber reach equilibrium. This can be caused by either the air valve closing (due to the pedal apply stopping) or if "run out" is reached. Run out occurs when the pressure in one chamber reaches atmospheric pressure and no additional force can be generated by the now stagnant differential pressure. After the run out point is reached, only the driver's foot force can be used to further apply the master cylinder piston.

The fluid pressure from the master cylinder travels through a pair of steel brake tubes to a pressure differential valve, sometimes referred to as a "brake failure valve", which performs two functions: it equalizes pressure between the two systems, and it provides a warning if one system loses pressure. The pressure differential valve has two chambers (to which the hydraulic lines attach) with a piston between them. When the pressure in either line is balanced, the piston does not move. If the pressure on one side is lost, the pressure from the other side moves the piston. When the piston makes contact with a simple electrical probe in the center of the unit, a circuit is completed, and the operator is warned of a failure in the brake system.

From the pressure differential valve, brake tubing carries the pressure to the brake units at the wheels. Since the wheels do not maintain a fixed relation to the automobile, it is necessary to use hydraulic brake hose from the end of the steel line at the vehicle frame to the caliper at the wheel. Allowing steel brake tubing to flex invites metal fatigue and, ultimately, brake failure. A common upgrade is to replace the standard rubber hoses with a set which are externally reinforced with braided stainless-steel wires; these have negligible expansion under pressure and can give a firmer feel to the brake pedal with less pedal travel for a given braking effort.

See also

References

  1. ^ Csere, Csaba (January 1988), "10 Best Engineering Breakthroughs", Car and Driver, vol. 33, no. 7, p. 61

Patents

  • US 2746575  Disc brakes for road and other vehicles. Kinchin 1956-05-22
  • US 2591793  Device for adjusting the return travel of fluid actuated means. Dubois 1952-04-08
  • US 2544849  Hydraulic brake automatic adjuster. Martin 1951-03-13
  • US 2485032  Brake apparatus. Bryant 1949-10-08
  • US 2466990  Single disk brake. Johnson Wade C, Trishman Harry A, Stratton Edgar H. 1949-04-12
  • US 2416091  Fluid pressure control mechanism. Fitch 1947-02-12
  • US 2405219  Disk brake. Lambert Homer T. 1946-08-06
  • US 2375855  Multiple disk brake. Lambert Homer T. 1945-05-15
  • US 2366093  Brake. Forbes Joseph A. 1944-12-26
  • US 2140752  Brake. La Brie 1938-12-20
  • US 2084216  V-type brake for motor vehicles. Poage Robert A. and Poage Marlin Z. 1937-06-15
  • US 2028488  Brake. Avery William Leicester 1936-02-21
  • US 1959049  Friction Brake. Buus Niels Peter Valdemar 1934-05-15
  • US 1954534  Brake. Norton Raymond J 1934-04-10
  • US 1721370  Brake for use on vehicles. Boughton Edward Bishop 1929-07-16
  • DE 695921  Antriebsvorrichtung mit hydraulischem Gestaenge.... Borgwar Carl Friedrich Wilhelm 1940-09-06
  • GB 377478  Improvements in wheel cylinders for hydraulic brakes. Hall Frederick Harold 1932-07-28
  • GB 365069  Improvements in control gear for hydraulically operated devices and particularly brakes for vehicles. Rubury John Meredith 1932-01-06
  • Erjavec, Jack (2004). Automotive Technology: A Systems Approach, Delmar Cengage Learning. ISBN 1-4018-4831-1
  • Allan and Malcolm Loughead (Lockheed) Their Early Lives in the Santa Cruz Mountains including the invention of the hydraulic brake.