This is an old revision of this page, as edited by 129.67.117.252(talk) at 13:13, 16 May 2018(Added general product rule to see also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 13:13, 16 May 2018 by 129.67.117.252(talk)(Added general product rule to see also)
For Euler's chain rule relating partial derivatives of three independent variables, see Triple product rule. For the counting principle in combinatorics, see Rule of product. For the general product rule in probability, see Chain rule (probability).
In Leibniz's notation, the derivative of the product of three functions (not to be confused with Euler's triple product rule) is
Discovery
Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials.[1] (However, Child (2008) argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let u(x) and v(x) be two differentiable functions of x. Then the differential of uv is
Since the term du·dv is "negligible" (compared to du and dv), Leibniz concluded that
and this is indeed the differential form of the product rule. If we divide through by the differential dx, we obtain
Suppose we want to differentiate f(x) = x2 sin(x). By using the product rule, one gets the derivative f′(x) = 2x sin(x) + x2 cos(x) (since the derivative of x2 is 2x and the derivative of the sine function is the cosine function).
One special case of the product rule is the constant multiple rule, which states: if c is a number and f(x) is a differentiable function, then cf(x) is also differentiable, and its derivative is (cf)′(x) = cf′(x). This follows from the product rule since the derivative of any constant is zero. This, combined with the sum rule for derivatives, shows that differentiation is linear.
The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable, but only says what its derivative is if it is differentiable.)
Proofs
Proof by factoring (Proof from first principles)
Let h(x) = f(x)g(x) and suppose that f and g are each differentiable at x. We want to prove that h is differentiable at x and that its derivative, h′(x), is given by f′(x)g(x) + f(x)g′(x). To do this, (which is zero, and thus does not change the value) is added to the numerator to permit its factoring, and then properties of limits are used.
Brief proof
By definition, if are differentiable at then we can write
There is a proof using quarter square multiplication which relies on the chain rule and on the properties of the quarter square function (shown here as q, i.e., with ):
Differentiating both sides:
Chain rule
The product rule can be considered a special case of the chain rule for several variables.
The product rule can be generalized to products of more than two factors. For example, for three factors we have
.
For a collection of functions , we have
Higher derivatives
It can also be generalized to the general Leibniz rule for the nth derivative of a product of two factors, by symbolically expanding according to the binomial theorem:
Applied at a specific point x, the above formula gives:
Furthermore, for the nth derivative of an arbitrary number of factors:
Note: cross products are not commutative, i.e. , instead products are anticommutative, so it can be written as
Scalar fields
For scalar fields the concept of gradient is the analog of the derivative:
Applications
Among the applications of the product rule is a proof that
when n is a positive integer (this rule is true even if n is not positive or is not an integer, but the proof of that must rely on other methods). The proof is by mathematical induction on the exponent n. If n = 0 then xn is constant and nxn − 1 = 0. The rule holds in that case because the derivative of a constant function is 0. If the rule holds for any particular exponent n, then for the next value, n + 1, we have
Therefore if the proposition is true for n, it is true also for n + 1, and therefore for all natural n.