1 32 polytope

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tomruen (talk | contribs) at 19:44, 5 December 2015 (→‎1_32 polytope). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.


321

231

132

Rectified 321

birectified 321

Rectified 231

Rectified 132
Orthogonal projections in E6 Coxeter plane

In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group.

Its Coxeter symbol is 132, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 1-node sequences.

The rectified 132 is constructed by points at the mid-edges of the 132.

These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

1_32 polytope

132
Type Uniform 7-polytope
Family 1k2 polytope
Schläfli symbol {3,33,2}
Coxeter symbol 132
Coxeter diagram
6-faces 182:
56 122
126 131
5-faces 4284:
756 121
1512 121
2016 {34}
4-faces 23688:
4032 {33}
7560 111
12096 {33}
Cells 50400:
20160 {32}
30240 {32}
Faces 40320 {3}
Edges 10080
Vertices 576
Vertex figure t2{35}
Petrie polygon Octadecagon
Coxeter group E7, [33,2,1], order 2903040
Properties convex

This polytope can tessellate 7-dimensional space, with symbol 133, and Coxeter-Dynkin diagram, . It is the Voronoi cell of the dual E7* lattice.[1]

Alternate names

  • E. L. Elte named it V576 (for its 576 vertices) in his 1912 listing of semiregular polytopes.[2]
  • Coxeter called it 132 for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node branch.
  • Pentacontihexa-hecatonicosihexa-exon (Acronym lin) - 56-126 facetted polyexon (Jonathan Bowers)[3]

Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram,

Removing the node on the end of the 2-length branch leaves the 6-demicube, 131,

Removing the node on the end of the 3-length branch leaves the 122,

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 6-simplex, 032,

Images

Coxeter plane projections
E7 E6 / F4 B7 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

Related polytopes and honeycombs

The 132 is third in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The next figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb, 134.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [[33,3,1]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph - -
Name 13,-1 130 131 132 133 134
1k2 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = = E8+ E10 = = E8++
Coxeter
diagram
Symmetry
(order)
[3−1,2,1] [30,2,1] [31,2,1] [[32,2,1]] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 1,920 103,680 2,903,040 696,729,600
Graph - -
Name 1−1,2 102 112 122 132 142 152 162

Rectified 1_32 polytope

Rectified 132
Type Uniform 7-polytope
Schläfli symbol t1{3,33,2}
Coxeter symbol 0321
Coxeter-Dynkin diagram
6-faces 758
5-faces 12348
4-faces 72072
Cells 191520
Faces 241920
Edges 120960
Vertices 10080
Vertex figure {3,3}×{3}×{}
Coxeter group E7, [33,2,1], order 2903040
Properties convex

The rectified 132 (also called 0321) is a rectification of the 132 polytope, creating new vertices on the center of edge of the 132. Its vertex figure is a duoprism prism, the product of a regular tetrahedra and triangle, doubled into a prism: {3,3}×{3}×{}.

Alternate names

  • Rectified pentacontihexa-hecatonicosihexa-exon for rectified 56-126 facetted polyexon (acronym rolin) (Jonathan Bowers)[4]

Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. These mirrors are represented by its Coxeter-Dynkin diagram, , and the ring represents the position of the active mirror(s).

Removing the node on the end of the 3-length branch leaves the rectified 122 polytope,

Removing the node on the end of the 2-length branch leaves the demihexeract, 131,

Removing the node on the end of the 1-length branch leaves the birectified 6-simplex,

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the tetrahedron-triangle duoprism prism, {3,3}×{3}×{},

Images

Coxeter plane projections
E7 E6 / F4 B7 / A6

[18]

[12]

[14]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

See also

Notes

  1. ^ The Voronoi Cells of the E6* and E7* Lattices, Edward Pervin
  2. ^ Elte, 1912
  3. ^ Klitzing, (o3o3o3x *c3o3o3o - lin)
  4. ^ Klitzing, (o3o3x3o *c3o3o3o - rolin)

References

  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". o3o3o3x *c3o3o3o - lin, o3o3x3o *c3o3o3o - rolin
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds