Jump to content

Moffat distribution

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 46.95.204.96 (talk) at 00:04, 14 January 2023 (Relation to other distributions). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Moffat distribution, named after the physicist Anthony Moffat, is a continuous probability distribution based upon the Lorentzian distribution. Its particular importance in astrophysics is due to its ability to accurately reconstruct point spread functions, whose wings cannot be accurately portrayed by either a Gaussian or Lorentzian function.

Characterisation

Probability density function

The Moffat distribution can be described in two ways. Firstly as the distribution of a bivariate random variable (X,Y) centred at zero, and secondly as the distribution of the corresponding radii

In terms of the random vector (X,Y), the distribution has the probability density function (pdf)

where and are seeing dependent parameters. In this form, the distribution is a reparameterisation of a bivariate Student distribution with zero correlation.

In terms of the random variable R, the distribution has density

Relation to other distributions

References