Jump to content

UDP-N-acetylglucosamine 1-carboxyvinyltransferase

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by PrimeBOT (talk | contribs) at 16:13, 26 August 2023 (top: Task 30: infobox bad param removal). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

UDP-N-acetylglucosamine 1-carboxyvinyltransferase
UDP-N-acetylglucosamine 1-carboxyvinyltransferase tetramer, Enterobacter cloacae
Identifiers
EC no.2.5.1.7
CAS no.9023-27-2
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

In enzymology, an UDP-N-acetylglucosamine 1-carboxyvinyltransferase (EC 2.5.1.7) is an enzyme[1] that catalyzes the first committed step in peptidoglycan biosynthesis of bacteria:

phosphoenolpyruvate + UDP-N-acetyl-D-glucosamine phosphate + UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine

Thus, the two substrates of this enzyme are phosphoenolpyruvate and UDP-N-acetyl-D-glucosamine, whereas its two products are phosphate and UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine. The pyruvate moiety provides the linker that bridges the glycan and peptide portion of peptidoglycan.[2]

The enzyme is inhibited by the antibiotic fosfomycin, which covalently modifies an active site cysteine residue.[3]

This enzyme belongs to the family of transferases, specifically those transferring aryl or alkyl groups other than methyl groups. The systematic name of this enzyme class is phosphoenolpyruvate:UDP-N-acetyl-D-glucosamine 1-carboxyvinyltransferase.[4] This enzyme participates in amino sugars metabolism and glycan biosynthesis.

Structural studies

As of late 2007, 10 structures have been solved for this class of enzymes, with PDB accession codes 1A2N, 1DLG, 1EJC, 1EJD, 1EYN, 1NAW, 1Q3G, 1RYW, 1UAE, and 1YBG.

References

  1. ^ "Enolpyruvate transferase, EPT family". Retrieved 2008-11-23.
  2. ^ Brown ED, Vivas EI, Walsh CT, Kolter R (July 1995). "MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli". J. Bacteriol. 177 (14): 4194–7. doi:10.1128/jb.177.14.4194-4197.1995. PMC 177162. PMID 7608103.
  3. ^ King, Michael B. (2005). Lange Q & A. New York: McGraw-Hill, Medical Pub. Division. pp. 298. ISBN 0-07-144578-1.
  4. ^ Other names in common use include MurA transferase, UDP-N-acetylglucosamine 1-carboxyvinyl-transferase, UDP-N-acetylglucosamine enoylpyruvyltransferase, enoylpyruvate transferase, phosphoenolpyruvate-UDP-acetylglucosamine-3-enolpyruvyltransferase, phosphoenolpyruvate:UDP-2-acetamido-2-deoxy-D-glucose 2-enoyl-1-carboxyethyltransferase, phosphoenolpyruvate:uridine diphosphate N-acetylglucosamine enolpyruvyltransferase, phosphoenolpyruvate:uridine-5'-diphospho-N-acetyl-2-amino-2-deoxyglucose 3-enolpyruvyltransferase, phosphopyruvate-uridine diphosphoacetylglucosamine pyruvatetransferase, pyruvate-UDP-acetylglucosamine transferase, pyruvate-uridine diphospho-N-acetylglucosamine transferase, pyruvate-uridine diphospho-N-acetyl-glucosamine transferase, and pyruvic-uridine diphospho-N-acetylglucosaminyltransferase.

Literature

  • Gunetileke KG, Anwar RA (1968). "Biosynthesis of uridine diphospho-N-acetylmuramic acid. II Purification and properties of pyruvate-uridine diphospho-N-acetylglucosamine transferase and characterization of uridine diphospho-N-acetylenopyruvylglucosamine". J. Biol. Chem. 243 (21): 5770–8. PMID 5699062.
  • Zemell RI, Anwar RA (1975). "Pyruvate-uridine diphospho-N-acetylglucosamine transferase Purification to homogeneity and feedback inhibition". J. Biol. Chem. 250 (8): 3185–92. PMID 1123336.
  • van Heijenoort J (2001). "Recent advances in the formation of the bacterial peptidoglycan monomer unit". Nat. Prod. Rep. 18 (5): 503–19. doi:10.1039/a804532a. PMID 11699883.