Jump to content

CENTG2

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Headbomb (talk | contribs) at 01:04, 9 July 2016 (Further reading: clean up, replaced: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics → American Journal of Medical Genetics Part B using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

AGAP1
Identifiers
AliasesAGAP1, AGAP-1, CENTG2, GGAP1, cnt-g2, ArfGAP with GTPase domain, ankyrin repeat and PH domain 1
External IDsOMIM: 608651; MGI: 2653690; HomoloGene: 56689; GeneCards: AGAP1; OMA:AGAP1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001037131
NM_001244888
NM_014914

NM_001037136
NM_178119

RefSeq (protein)

NP_001032208
NP_001231817
NP_055729

NP_001032213
NP_835220

Location (UCSC)Chr 2: 235.49 – 236.13 MbChr 1: 89.38 – 89.83 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 is an enzyme that in humans is encoded by the AGAP1 gene.[5]

Function

CENTG2 belongs to an ADP-ribosylation factor GTPase-activating (ARF-GAP) protein family involved in membrane traffic and actin cytoskeleton dynamics (Nie et al., 2002).[supplied by OMIM][5]

HACNS1

HACNS1 is located in an intron of the gene CENTG2 (also known as Human Accelerated Region 2). HACNS1 is hypothesized to be a gene enhancer "that may have contributed to the evolution of the uniquely opposable human thumb, and possibly also modifications in the ankle or foot that allow humans to walk on two legs". Evidence to date shows that of the 110,000 gene enhancer sequences identified in the human genome, HACNS1 has undergone the most change during the evolution of humans following the split with the ancestors of chimpanzees.[6]

Model organisms

Model organisms have been used in the study of AGAP1 function. A conditional knockout mouse line called Agap1tm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[7] Male and female animals underwent a standardized phenotypic screen[8] to determine the effects of deletion.[9][10][11][12] Additional screens performed: - In-depth immunological phenotyping[13] - in-depth bone and cartilage phenotyping[14]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000157985Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000055013Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: CENTG2 centaurin, gamma 2".
  6. ^ HACNS1: Gene enhancer in evolution of human opposable thumb
  7. ^ Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  8. ^ a b "International Mouse Phenotyping Consortium".
  9. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  10. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  11. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  12. ^ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  13. ^ a b "Infection and Immunity Immunophenotyping (3i) Consortium".
  14. ^ a b "OBCD Consortium".

Further reading

  • Kikuno R, Nagase T, Ishikawa K, Hirosawa M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Jun 1999). "Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 6 (3): 197–205. doi:10.1093/dnares/6.3.197. PMID 10470851.
  • Nie Z, Stanley KT, Stauffer S, Jacques KM, Hirsch DS, Takei J, Randazzo PA (Dec 2002). "AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton". The Journal of Biological Chemistry. 277 (50): 48965–75. doi:10.1074/jbc.M202969200. PMID 12388557.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Xia C, Ma W, Stafford LJ, Liu C, Gong L, Martin JF, Liu M (Apr 2003). "GGAPs, a new family of bifunctional GTP-binding and GTPase-activating proteins". Molecular and Cellular Biology. 23 (7): 2476–88. doi:10.1128/MCB.23.7.2476-2488.2003. PMC 150724. PMID 12640130.
  • Nie Z, Boehm M, Boja ES, Vass WC, Bonifacino JS, Fales HM, Randazzo PA (Sep 2003). "Specific regulation of the adaptor protein complex AP-3 by the Arf GAP AGAP1". Developmental Cell. 5 (3): 513–21. doi:10.1016/S1534-5807(03)00234-X. PMID 12967569.
  • Meurer S, Pioch S, Wagner K, Müller-Esterl W, Gross S (Nov 2004). "AGAP1, a novel binding partner of nitric oxide-sensitive guanylyl cyclase". The Journal of Biological Chemistry. 279 (47): 49346–54. doi:10.1074/jbc.M410565200. PMID 15381706.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Wassink TH, Piven J, Vieland VJ, Jenkins L, Frantz R, Bartlett CW, Goedken R, Childress D, Spence MA, Smith M, Sheffield VC (Jul 2005). "Evaluation of the chromosome 2q37.3 gene CENTG2 as an autism susceptibility gene". American Journal of Medical Genetics Part B. 136B (1): 36–44. doi:10.1002/ajmg.b.30180. PMID 15892143.
  • Nie Z, Fei J, Premont RT, Randazzo PA (Aug 2005). "The Arf GAPs AGAP1 and AGAP2 distinguish between the adaptor protein complexes AP-1 and AP-3". Journal of Cell Science. 118 (Pt 15): 3555–66. doi:10.1242/jcs.02486. PMID 16079295.
  • Oh JH, Yang JO, Hahn Y, Kim MR, Byun SS, Jeon YJ, Kim JM, Song KS, Noh SM, Kim S, Yoo HS, Kim YS, Kim NS (Dec 2005). "Transcriptome analysis of human gastric cancer". Mammalian Genome. 16 (12): 942–54. doi:10.1007/s00335-005-0075-2. PMID 16341674.