In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are a sequence of orthogonal polynomials which are related to de Moivre's formula and which can be defined recursively. One usually distinguishes between Chebyshev polynomials of the first kind which are denoted Tn and Chebyshev polynomials of the second kind which are denoted Un. The letter T is used because of the alternative transliterations of the name Chebyshev as Tchebycheff (French) or Tschebyschow (German).
The Chebyshev polynomials Tn or Un are polynomials of degree n and the sequence of Chebyshev polynomials of either kind composes a polynomial sequence.
The Chebyshev polynomials of the first kind can be defined as the unique polynomials satisfying
or, in other words, as the unique polynomials satisfying
for n = 0, 1, 2, 3, ... which is a variant (equivalent transpose) of Schröder's equation,
viz. Tn(x) is functionally conjugate to nx, codified in
the nesting property below. Further compare to the spread polynomials, in the section below.
That cos(nx) is an nth-degree polynomial in cos(x) can be seen by observing that cos(nx) is the real part of one side of de Moivre's formula, and the real part of the other side is a polynomial in cos(x) and sin(x), in which all powers of sin(x) are even and thus replaceable through the identity cos2(x) + sin2(x) = 1.
This identity is quite useful in conjunction with the recursive generating formula, inasmuch as it enables one to calculate the cosine of any integral multiple of an angle solely in terms of the cosine of the base angle.
Evaluating the first two Chebyshev polynomials:
and:
one can straightforwardly determine that:
and so forth.
Two immediate corollaries are the composition identity (or nesting property specifying a semigroup)
and the expression of complex exponentiation in terms of Chebyshev polynomials: given z = a + bi,
Pell equation definition
The Chebyshev polynomials can also be defined as the solutions to the Pell equation
in a ring R[x].[2] Thus, they can be generated by the standard technique for Pell equations of taking powers of a fundamental solution:
Relation between Chebyshev polynomials of the first and second kinds
The Chebyshev polynomials of the first and second kind are closely related by the following equations
, where n is odd.
, where n is even.
The recurrence relationship of the derivative of Chebyshev polynomials can be derived from these relations
Equivalently, the two sequences can also be defined from a pair of mutual recurrence equations:
These can be derived from the trigonometric formulae; for example, if , then
Note that both these equations and the trigonometric equations take a simpler form if we, like some works, follow the alternate convention of denoting our Un (the polynomial of degree n) with Un+1 instead.
A Chebyshev polynomial of either kind with degree n has n different simple roots, called Chebyshev roots, in the interval [−1,1]. The roots of the Chebyshev polynomial of the first kind are sometimes called Chebyshev nodes because they are used as nodes in polynomial interpolation. Using the trigonometric definition and the fact that
one can easily prove that the roots of Tn are
Similarly, the roots of Un are
One unique property of the Chebyshev polynomials of the first kind is that on the interval −1 ≤ x ≤ 1 all of the extrema have values that are either −1 or 1. Thus these polynomials have only two finite critical values, the defining property of Shabat polynomials. Both the first and second kinds of Chebyshev polynomial have extrema at the endpoints, given by:
Differentiation and integration
The derivatives of the polynomials can be less than straightforward. By differentiating the polynomials in their trigonometric forms, it's easy to show that:
The last two formulas can be numerically troublesome due to the division by zero (0/0 indeterminate form, specifically) at x = 1 and x = −1. It can be shown that:
which, if evaluated as shown above, poses a problem because it is indeterminate at x = ±1. Since the function is a polynomial, (all of) the derivatives must exist for all real numbers, so the taking to limit on the expression above should yield the desired value:
where only is considered for now. Factoring the denominator:
Since the limit as a whole must exist, the limit of the numerator and denominator must independently exist, and
The denominator (still) limits to zero, which implies that the numerator must be limiting to zero, i.e. which will be useful later on. Since the numerator and denominator are both limiting to zero, L'Hôpital's rule applies:
The proof for is similar, with the fact that being important.
Indeed, the following, more general formula holds:
This latter result is of great use in the numerical solution of eigenvalue problems.
Concerning integration, the first derivative of the Tn implies that
and the recurrence relation for the first kind polynomials involving derivatives establishes that
Orthogonality
Both the Tn and the Un form a sequence of orthogonal polynomials. The polynomials of the first kind are orthogonal with respect to the weight
on the interval (−1,1), i.e. we have:
This can be proven by letting and using the identity
.
Similarly, the polynomials of the second kind are orthogonal with respect to the weight
For every nonnegative integer n, Tn(x) and Un(x) are both polynomials of degree n. They are even or odd functions of x as n is even or odd, so when written as polynomials of x, it only has even or odd degree terms respectively. In fact,
and
The leading coefficient of Tn is 2n − 1 if 1 ≤ n, but 1 if 0 = n.
Tn are a special case of Lissajous curves with frequency ratio equal to n.
The Chebyshev polynomials of the first kind satisfy the relation
which is easily proved from the product-to-sum formula for the cosine. The polynomials of the second kind satisfy the similar relation
Similar to the formula
we have the analogous formula
.
For ,
and
,
which follows from the fact that this holds by definition for .
Let
.
Then and are commuting polynomials:
,
as is evident in the Abelian nesting property specified above.
Examples
The first few Chebyshev polynomials of the first kind are
The first few Chebyshev polynomials of the second kind are
As a basis set
In the appropriate Sobolev space, the set of Chebyshev polynomials form a completebasis set, so that a function in the same space can, on −1 ≤ x ≤ 1 be expressed via the expansion:[3]
Furthermore, as mentioned previously, the Chebyshev polynomials form an orthogonal basis which (among other things) implies that the coefficients an can be determined easily through the application of an inner product. This sum is called a Chebyshev series or a Chebyshev expansion.
Since a Chebyshev series is related to a Fourier cosine series through a change of variables, all of the theorems, identities, etc. that apply to Fourier series have a Chebyshev counterpart.[3] These attributes include:
The Chebyshev polynomials form a complete orthogonal system.
The Chebyshev series converges to ƒ(x) if the function is piecewisesmooth and continuous. The smoothness requirement can be relaxed in most cases — as long as there are a finite number of discontinuities in ƒ(x) and its derivatives.
At a discontinuity, the series will converge to the average of the right and left limits.
The abundance of the theorems and identities inherited from Fourier series make the Chebyshev polynomials important tools in numeric analysis; for example they are the most popular general purpose basis functions used in the spectral method,[3] often in favor of trigonometric series due to generally faster convergence for continuous functions (Gibbs' phenomenon is still a problem).
Example 1
Consider the Chebyshev expansion of . One can express
One can find the coefficients either through the application of an inner product or by the discrete orthogonality condition. For the inner product,
which gives
Alternatively, when you cannot evaluate the inner product of the function you are trying to approximate, the discrete orthogonality condition gives
where is the Kronecker delta function and the are the N Gauss–Lobatto zeros of
As an interpolant, the N coefficients of the (N − 1)th partial sum are usually obtained on the Chebyshev–Gauss–Lobatto[4] points (or Lobatto grid), which results in minimum error and avoids Runge's phenomenon associated with a uniform grid. This collection of points corresponds to the extrema of the highest order polynomial in the sum, plus the endpoints and is given by:
Polynomial in Chebyshev form
An arbitrary polynomial of degree N can be written in terms of the Chebyshev polynomials of the first kind. Such a polynomial p(x) is of the form
Polynomials in Chebyshev form can be evaluated using the Clenshaw algorithm.
Spread polynomials
The spread polynomials are in a sense equivalent to the Chebyshev polynomials of the first kind, but enable one to avoid square roots and conventional trigonometric functions in certain contexts, notably in rational trigonometry.
^Chebyshev polynomials were first presented in: P. L. Chebyshev (1854) "Théorie des mécanismes connus sous le nom de parallélogrammes," Mémoires des Savants étrangers présentés à l’Académie de Saint-Pétersbourg, vol. 7, pages 539–586.