Cyclobutadieneiron tricarbonyl

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2601:542:c100:5507:94d9:2bf1:92ea:f942 (talk) at 00:20, 25 June 2016 (→‎References). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cyclobutadieneiron tricarbonyl
Identifiers
Properties
(C4H4)Fe(CO)3
Appearance yellow solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Cyclobutadieneiron tricarbonyl or (C4H4)Fe(CO)3 is an organoiron compound with the formula Fe(C4H4)(CO)3. It is a yellow solid that is soluble in organic solvents. It has been used in organic chemistry as a precursor for cyclobutadiene, which is an elusive species in the free state.[1]

Preparation and structure

It was first prepared in 1965 by Rowland Pettit starting from cyclooctatetraene:[2][3][4]

Cyclobutadieneiron tricarbonyl Synthesis

Cyclooctatetraene is chlorinated to the [4.2.0]-bicyclic compound which reacts further with the alkyne dimethyl acetylenedicarboxylate in a Diels-Alder reaction followed by a reverse-DA reaction by pyrolysis at 200 °C releasing cis-dichlorocyclobutene. This compound reacts with di-iron nonacarbonyl (obtained from photolysis of iron pentacarbonyl) to give cyclobutadieneiron tricarbonyl.

The compound is a half sandwich complex. The C-C distances are 1.426 Â.P. D. Harvey; W. P. Schaefer; H. B. Gray; D. F. R. Gilson; I. S. Butler (1988). "Structure of tricarbonyl(η4-cyclobutadienyl)iron(0) at −45 °C". Inorg. Chem. 27 (1): 57–59. doi:10.1021/ic00274a013.

Properties

Cyclobutadieneiron tricarbonyl displays aromaticity as evidenced by some of its reactions, which can be classified as electrophilic aromatic substitution:[5]

Cyclobutadieneiron tricarbonyl Reactions

It undergoes Friedel-Crafts acylation with acetyl chloride and aluminium chloride to give the acyl derivative 2, with formaldehyde and hydrochloric acid to the chloromethyl derivative 3, in a Vilsmeier-Haack reaction with N-methylformanilide and phosphorus oxychloride to the formyl 4, and in a Mannich reaction to amine derivative 5.

The reaction mechanism is identical to that of EAS:

Cyclobutadieneiron tricarbonyl EAS reactionmechanism

Related compounds

Several years before Petit's work, (C4Ph4)Fe(CO)3 had been prepared from the reaction of iron carbonyl and diphenylacetylene.[6]

References

  1. ^ D. Seyferth "(Cyclobutadiene)iron Tricarbonyl - A Case of Theory before Experiment" Organometallics 2003, volume 22, 2-20.
  2. ^ Cyclobutadiene- and Benzocyclobutadiene-Iron Tricarbonyl Complexes G. F. Emerson, L. Watts, R. Pettit; J. Am. Chem. Soc.; 1965; 87(1); 131-133. First Page
  3. ^ Cis-dichlorocyclobutene , Organic Syntheses, Coll. Vol. 6, p.422 (1988); Vol. 50, p.36 (1970) Article.
  4. ^ Iron, tricarbonyl (η4-1,3-cyclobutadiene)- R. Pettit and J. Henery Organic Syntheses, Coll. Vol. 6, p.310 (1988); Vol. 50, p.21 (1970) Link
  5. ^ Cyclobutadieneiron Tricarbonyl. A New Aromatic System J. D. Fitzpatrick, L. Watts, G. F. Emerson, R. Pettit J. Am. Chem. Soc.; 1965, vol. 87, 3254-3255 Abstract
  6. ^ R. P. Dodge, V. Schomaker, "Crystal Structure of Tetraphenylcyclobutadiene Iron Tricarbonyl", Nature 1960, vol. 186, 798-799.doi:10.1038/186798b0