Jump to content

Dimethoxyethane

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by LaundryPizza03 (talk | contribs) at 14:40, 11 June 2022 (added Category:Ligands using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Dimethoxyethane
Skeletal formula of dimethoxyethane
Ball-and-stick model of the dimethoxyethane molecule
Names
Preferred IUPAC name
1,2-Dimethoxyethane[1]
Other names
Ethane-1,2-diyl dimethyl ether[1]
DME
Glyme
Ethylene glycol dimethyl ether
Monoglyme
Dimethyl glycol
Dimethyl cellosolve
Identifiers
3D model (JSmol)
Abbreviations dme
1209237
ChEBI
ChemSpider
ECHA InfoCard 100.003.451 Edit this at Wikidata
EC Number
  • 203-794-9
1801
RTECS number
  • KI1451000
UNII
  • InChI=1S/C4H10O2/c1-4(5-2)6-3/h4H,1-3H3 checkY
    Key: SPEUIVXLLWOEMJ-UHFFFAOYSA-N checkY
  • InChI=1/C4H10O2/c1-4(5-2)6-3/h4H,1-3H3
    Key: SPEUIVXLLWOEMJ-UHFFFAOYAV
  • COCCOC
Properties
C4H10O2
Molar mass 90.122 g·mol−1
Appearance Colorless liquid
Density 0.8683 g/cm3
Melting point −58 °C (−72 °F; 215 K)
Boiling point 85 °C (185 °F; 358 K)
miscible
Hazards
GHS labelling:
GHS02: FlammableGHS07: Exclamation markGHS08: Health hazard
Danger
H225, H332, H360FD
P201, P202, P210, P233, P240, P241, P242, P243, P261, P271, P280, P281, P303+P361+P353, P304+P312, P304+P340, P308+P313, P312, P370+P378, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
2
0
Flash point −2 °C (28 °F; 271 K)
Related compounds
Related Ethers
Dimethoxymethane
Related compounds
Ethylene glycol
1,4-Dioxane
Diethylene glycol dimethyl ether
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Dimethoxyethane, also known as glyme, monoglyme, dimethyl glycol, ethylene glycol dimethyl ether, dimethyl cellosolve, and DME, is a colorless, aprotic, and liquid ether that is used as a solvent, especially in batteries.[2] Dimethoxyethane is miscible with water.

Production

Monoglyme is produced industrially by the reaction of dimethylether with ethylene oxide:[3][4]

CH3OCH3 + CH2CH2O → CH3OCH2CH2OCH3

Applications as solvent and ligand

Structure of the coordination complex NbCl3(dimethoxyethane)(3-hexyne).[5]

Together with a high-permittivity solvent (e.g. propylene carbonate), dimethoxyethane is used as the low-viscosity component of the solvent for electrolytes of lithium batteries. In the laboratory, DME is used as a coordinating solvent.

Dimethoxyethane is often used as a higher boiling alternative to diethyl ether and THF. Dimethoxyethane acts as a bidentate ligand for some metal cations. It is therefore often used in organometallic chemistry. Grignard reactions and hydride reductions are typical application. It is also suitable for palladium-catalyzed reactions including Suzuki reactions and Stille couplings. Dimethoxyethane is also a good solvent for oligo- and polysaccharides.

References

  1. ^ a b Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 704. doi:10.1039/9781849733069-00648. ISBN 978-0-85404-182-4.
  2. ^ D. Berndt, D. Spahrbier, "Batteries" in Ullmann’s Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a03_343
  3. ^ "Ethylene Glycol". Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2000. doi:10.1002/14356007.a10_101. ISBN 3527306730. {{cite encyclopedia}}: Unknown parameter |authors= ignored (help)
  4. ^ Dimethoxyethane
  5. ^ Arteaga-Müller, Rocío; Tsurugi, Hayato; Saito, Teruhiko; Yanagawa, Masao; Oda, Seiji; Mashima, Kazushi (2009). "New Tantalum Ligand-Free Catalyst System for Highly Selective Trimerization of Ethylene Affording 1-Hexene: New Evidence of a Metallacycle Mechanism". Journal of the American Chemical Society. 131 (15): 5370–5371. doi:10.1021/ja8100837. PMID 20560633.