Jump to content

Draft:Plastiome

From Wikipedia, the free encyclopedia

Plastiome refers to the plastisphere-enriched mobile resistome found in aquatic environments.[1] With persistence of plastics and microplastics in the environment, these act as reservoirs for microbial communities and antibiotic resistance genes,[2] fostering the formation of a mobile resistome encompassing diverse antibiotic, biocide/metal resistance genes, and mobile genetic elements. This collective genetic repertoire, plastome, can potentially perpetuate environmental antimicrobial resistance (AMR).[1] This plastiome in fresh water environments have shown more than three times higher enrichment of antibiotic on microplastics than those in water,[1] and it has been reported that some of the identified taxa attached to the plastics could be potential pathogens and pose a risk to human health and the environment.[3]

Plastiome in Environment[edit]

Microplastics are persistent, very mobile and hard to remove from nature.[4][5] Hence, these plastiomes could perpetuate harmful multidrug resistance genes in microbes in the environment. Plastiomes were identified and reported in two rivers near Tokyo, Japan.[6]

Plastiome and Health Risk[edit]

The health risks of plastiome can be recognized from four aspects, 1). pathogens residing within the plastisphere[7], 2). potential acquisition of antimicrobial resistance though horizontal gene transfer[8], 3). increased tolerance to antibiotics[9], and 4). trophic transfer through food webs. Microplastics trophic transfer through food webs has been researched and well documented[10][11][12]. Further the evidence indicates that the ratio of pathogens to total bacteria[2], as well as the presence of resistance genes[1], is significantly higher in the plastisphere compared to surrounding water. This raises concerns that the plastiome poses additional health risks associated to antimicrobial resistance in aquatic environments.

References[edit]

  1. ^ a b c d Guruge, Keerthi S.; Goswami, Prasun; Kanda, Kazuki; Abeynayaka, Amila; Kumagai, Masahiko; Watanabe, Mafumi; Tamamura-Andoh, Yukino (2024). "Plastiome: Plastisphere-enriched mobile resistome in aquatic environments". Journal of Hazardous Materials. 471 (134353). Bibcode:2024JHzM..47134353G. doi:10.1016/j.jhazmat.2024.134353. ISSN 0304-3894. PMID 38678707.
  2. ^ a b Yang, Kai; Chen, Qing-Lin; Chen, Mo-Lian; Li, Hong-Zhe; Liao, Hu; Pu, Qiang; Zhu, Yong-Guan; Cui, Li (15 September 2020). "Temporal Dynamics of Antibiotic Resistome in the Plastisphere during Microbial Colonization". Environmental Science & Technology. 54 (18): 11322–11332. Bibcode:2020EnST...5411322Y. doi:10.1021/acs.est.0c04292. ISSN 0013-936X. PMID 32812755.
  3. ^ Martínez-Campos, Sergio; González-Pleiter, Miguel; Rico, Andreu; Schell, Theresa; Vighi, Marco; Fernández-Piñas, Francisca; Rosal, Roberto; Leganés, Francisco (5 February 2023). "Time-course biofilm formation and presence of antibiotic resistance genes on everyday plastic items deployed in river waters". Journal of Hazardous Materials. 443 (Pt B): 130271. Bibcode:2023JHzM..44330271M. doi:10.1016/j.jhazmat.2022.130271. ISSN 0304-3894. PMID 36351347.
  4. ^ "Microplastics". Environment. European Commission. 25 April 2024.
  5. ^ Amelia, Tan Suet May; Khalik, Wan Mohd Afiq Wan Mohd; Ong, Meng Chuan; Shao, Yi Ta; Pan, Hui-Juan; Bhubalan, Kesaven (22 January 2021). "Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans". Progress in Earth and Planetary Science. 8 (1): 12. Bibcode:2021PEPS....8...12A. doi:10.1186/s40645-020-00405-4. ISSN 2197-4284.
  6. ^ "Microplastic-associated microbes are becoming more common in aquatic environments". Plastic Pollution Coalition.
  7. ^ González-Pleiter, Miguel; Velázquez, David; Casero, María Cristina; Tytgat, Bjorn; Verleyen, Elie; Leganés, Francisco; Rosal, Roberto; Quesada, Antonio; Fernández-Piñas, Francisca (15 November 2021). "Microbial colonizers of microplastics in an Arctic freshwater lake". Science of the Total Environment. 795: 148640. Bibcode:2021ScTEn.79548640G. doi:10.1016/j.scitotenv.2021.148640. ISSN 0048-9697. PMID 34246139.
  8. ^ von Wintersdorff, Christian J. H.; Penders, John; van Niekerk, Julius M.; Mills, Nathan D.; Majumder, Snehali; van Alphen, Lieke B.; Savelkoul, Paul H. M.; Wolffs, Petra F. G. (19 February 2016). "Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer". Frontiers in Microbiology. 7: 173. doi:10.3389/fmicb.2016.00173. ISSN 1664-302X. PMC 4759269. PMID 26925045.
  9. ^ Zheng, Zhijie; Huang, Yao; Liu, Linan; Wang, Lan; Tang, Jingchun (5 October 2023). "Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene". Journal of Hazardous Materials. 459: 132099. Bibcode:2023JHzM..45932099Z. doi:10.1016/j.jhazmat.2023.132099. ISSN 0304-3894. PMID 37517232.
  10. ^ Athey, Samantha N.; Albotra, Samantha D.; Gordon, Cessely A.; Monteleone, Bonnie; Seaton, Pamela; Andrady, Anthony L.; Taylor, Alison R.; Brander, Susanne M. (February 2020). "Trophic transfer of microplastics in an estuarine food chain and the effects of a sorbed legacy pollutant". Limnology and Oceanography Letters. 5 (1): 154–162. Bibcode:2020LimOL...5..154A. doi:10.1002/lol2.10130. ISSN 2378-2242.
  11. ^ Mateos-Cárdenas, Alicia; Moroney, Aran von der Geest; van Pelt, Frank N. A. M.; O'Halloran, John; Jansen, Marcel A. K. (1 June 2022). "Trophic transfer of microplastics in a model freshwater microcosm; lack of a consumer avoidance response". Food Webs. 31: e00228. Bibcode:2022FWebs..3100228M. doi:10.1016/j.fooweb.2022.e00228. ISSN 2352-2496.
  12. ^ Gao, Shike; Li, Zheng; Zhang, Shuo (1 March 2024). "Trophic transfer and biomagnification of microplastics through food webs in coastal waters: A new perspective from a mass balance model". Marine Pollution Bulletin. 200: 116082. Bibcode:2024MarPB.20016082G. doi:10.1016/j.marpolbul.2024.116082. ISSN 0025-326X. PMID 38367586.