Jump to content

Fluorene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Addbot (talk | contribs) at 22:24, 14 March 2013 (Bot: Migrating 10 interwiki links, now provided by Wikidata on d:q417934). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Fluorene[1]
Names
IUPAC name
9H-Fluorene
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.541 Edit this at Wikidata
EC Number
  • 201-695-5
KEGG
UNII
  • InChI=1S/C13H10/c1-3-7-12-10(5-1)9-11-6-2-4-8-13(11)12/h1-8H,9H2 checkY
    Key: NIHNNTQXNPWCJQ-UHFFFAOYSA-N checkY
  • InChI=1/C13H10/c1-3-7-12-10(5-1)9-11-6-2-4-8-13(11)12/h1-8H,9H2
    Key: NIHNNTQXNPWCJQ-UHFFFAOYAW
  • c1ccc-2c(c1)Cc3c2cccc3
Properties
C13H10
Molar mass 166.223 g/mol
Density 1.202 g/mL
Melting point 116-117 °C
Boiling point 295 °C (563 °F; 568 K)
1.992 mg/L
Acidity (pKa) 22.6
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Fluorene, or 9H-fluorene, is a polycyclic aromatic hydrocarbon. It forms white crystals that exhibit a characteristic, aromatic odor similar to that of naphthalene. It is combustible. It has a violet fluorescence, hence its name. For commercial purposes it is obtained from coal tar. It is insoluble in water and soluble in benzene and ether.

Synthesis, structure, and reactivity

Although fluorene is obtained from coal tar, it can also be prepared by dehydrogenation of diphenylmethane.[2]

The fluorene molecule is nearly planar,[3] although each of the two benzene rings is coplanar with the central carbon 9.[4]

Acidity

The C9-H sites of the fluorene ring are weakly acidic (pKa = 22.6 in DMSO.[5]) Deprotonation gives the stable fluorenyl "anion", nominally C13H9, which is aromatic and has an intense orange colour. The anion is a nucleophile, and most electrophiles react with it by adding to the 9-position. The purification of fluorene exploits its acidity and the low solubility of its sodium derivative in hydrocarbon solvents.

Both protons can be removed from C9. For example, 9,9-fluorenyldipotassium can be obtained by treating fluorene with potassium metal in boiling dioxane.[6]

Uses

Fluorene is a precursor to other fluorene compounds; the parent species has few applications. Fluorene-9-carboxylic acid is a precursor to pharmaceuticals. 2-Aminofluorene, 3,6-bis-(dimethylamino)fluorene, and 2,7-diiodofluorene are precursors to dyes. Oxidation of fluorene gives fluorenone, which is nitrated to give commercially useful derivatives. 9-Fluorenylmethyl chloroformate (Fmoc chloride) is used to introduce the 9-fluorenylmethyl carbamate (Fmoc) protecting group on amines in peptide synthesis.[2]

Polyfluorene polymers (where carbon 7 of one unit is linked to carbon 2 of the next one, displacing two hydrogens) are electrically conductive and electroluminescent, and have been much investigated for use as a luminophore in organic light-emitting diodes.

See also

References

  1. ^ Merck Index, 11th Edition, 4081
  2. ^ a b Karl Griesbaum, Arno Behr, Dieter Biedenkapp, Heinz-Werner Voges, Dorothea Garbe, Christian Paetz, Gerd Collin, Dieter Mayer, Hartmut Höke “Hydrocarbons” in Ullmann's Encyclopedia of Industrial Chemistry 2002 Wiley-VCH, Weinheim. doi:10.1002/14356007.a13_227
  3. ^ D. M. Burns, John Iball (1954), Molecular Structure of Fluorene Nature volume 173, p. 635. doi:10.1038/173635a0
  4. ^ R. E. Gerkin, A. P. Lundstedt and W. J. Reppart (1984) Structure of fluorene, C13H10, at 159 K Acta Crystallographica, volume C40, pp. 1892–1894 doi:10.1107/S0108270184009963
  5. ^ F. G. Bordwell (1988). "Equilibrium acidities in dimethyl sulfoxide solution". Acc. Chem. Res. 21 (12): 456–463. doi:10.1021/ar00156a004.
  6. ^ G. W. Scherf and R. K. Brown (1960), POTASSIUM DERIVATIVES OF FLUORENE AS INTERMEDIATES IN THE PREPARATION OF C9-SUBSTITUTED FLUORENES. I. THE PREPARATION OF 9-FLUORENYL POTASSIUM AND THE INFRARED SPECTRA OF FLUORENE AND SOME C9-SUBSTITUTED FLUORENES. Canadian Journal of Chemistry, Vol. 38, p. 697.

External links