6-orthoplex

From Wikipedia, the free encyclopedia
  (Redirected from Hexacross)
Jump to: navigation, search
6-orthoplex
Hexacross
6-cube t5.svg
Orthogonal projection
inside Petrie polygon
Type Regular 6-polytope
Family orthoplex
Schläfli symbols {3,3,3,3,4}
{3,3,3,31,1}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
5-faces 64 {34}5-simplex t0.svg
4-faces 192 {33}4-simplex t0.svg
Cells 240 {3,3}3-simplex t0.svg
Faces 160 {3}2-simplex t0.svg
Edges 60
Vertices 12
Vertex figure 5-orthoplex
Petrie polygon dodecagon
Coxeter groups B6, [3,3,3,3,4]
D6, [33,1,1]
Dual 6-cube
Properties convex

In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 vertices, 60 edges, 160 triangle faces, 240 tetrahedron cells, 192 5-cell 4-faces, and 64 5-faces.

It has two constructed forms, the first being regular with Schläfli symbol {34,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,31,1} or Coxeter symbol 311.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 6-hypercube, or hexeract.

Alternate names[edit]

Construction[edit]

There are three Coxeter groups associated with the 6-orthoplex, one regular, dual of the hexeract with the C6 or [4,3,3,3,3] Coxeter group, and a half symmetry with two copies of 5-simplex facets, alternating, with the D6 or [33,1,1] Coxeter group. A lowest symmetry construction is based on a dual of a 6-orthotope, called a 6-fusil.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure
Alternate 6-orthoplex CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {3,3,3,3,4} [3,3,3,3,4] 46080 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
regular 6-orthoplex CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png {3,3,3,31,1} [3,3,3,31,1] 23040 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
6-fusil CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png 6{} [25] 64 CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png

Cartesian coordinates[edit]

Cartesian coordinates for the vertices of a 6-orthoplex, centered at the origin are

(±1,0,0,0,0,0), (0,±1,0,0,0,0), (0,0,±1,0,0,0), (0,0,0,±1,0,0), (0,0,0,0,±1,0), (0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.

Images[edit]

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t5.svg 6-cube t5 B5.svg 6-cube t5 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t5 B3.svg 6-cube t5 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t5 A5.svg 6-cube t5 A3.svg
Dihedral symmetry [6] [4]

Related polytopes[edit]

The 6-orthoplex can be projected down to 3-dimensions into the vertices of a regular icosahedron, as seen in this 2D projection:

2D 3D
Icosahedron t0 H3.png
Icosahedron
H3 Coxeter plane
6-cube t5 B5.svg
6-orthoplex
D6 Coxeter plane
Icosahedron frame.png
Icosahedron
Hexacross.png
An icosahedrally symmetric projection of the 6-orthoplex down to three dimensions
This construction can be geometrically seen as the 12 vertices of the 6-orthoplex projected to 3 dimensions as the vertices of a regular icosahedron. Every pair of vertices of the icosahedra are connected, except opposite ones.
This represents a geometric folding of the D6 to H3 Coxeter groups: Geometric folding Coxeter graph D6 H3.png

Seen by these 2D Coxeter plane orthogonal projections, the two overlapping central vertices define the third axis in this mapping.

It is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. (A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.)

3k1 dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3−1,3,1] [30,3,1] [[31,3,1]] [32,3,1] [33,3,1] [34,3,1]
Order 48 720 46,080 2,903,040
Graph 5-simplex t0.svg 6-cube t5.svg Up2 3 21 t0 E7.svg - -
Name 31,-1 310 311 321 331 341

This polytope is one of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

References[edit]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. 1966
  • Klitzing, Richard. "6D uniform polytopes (polypeta) x3o3o3o3o4o - gee". 

External links[edit]

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds