Hoffmann Institute of Advanced Materials
The Hoffmann Institute of Advanced Materials (HIAM) is a science research institute affiliated to Shenzhen Polytechnic in Shenzhen, China.[1] As the eighth institute at Shenzhen named after a Nobel laureate, it was founded in February 2018[2] under the tutelage of the theoretical chemist Roald Hoffmann.[3] The institute was officially opened with a formal ceremony in May 2019.[4][5][6][7]
Its research topics cover novel functional materials, with an emphasis on their properties and applications in new energy and renewable energy fields. The institute's key research areas are photo-electric materials, energy-storage materials, and energy-efficient materials. The institute consists of three departments: a computational laboratory, a materials research laboratory, and a device commercialization laboratory.
The institute holds strong ties with other international laboratories dealing with energy-related research, including those from Kyoto and Osaka (Japan), Aachen and Düsseldorf (Germany), NIST (U.S.), and Skoltech (Russia).[8] Likewise, the institute collaborates in regard to the chemistry, physics, and materials science of complex mixed-anion inorganic compounds with universities and research institutions in Kyoto (Japan), Oxford (UK), Antwerp (Belgium), and Bordeaux (France).[9]
Advisory board
[edit]The institute is supported by a high-level advisory board, which currently includes Lin Jianhua, Francis J. DiSalvo, Galen Stucky, Maochun Hong, Xiaoming Chen, Robert Cava, and Markus Antonietti.
Research accomplishments
[edit]Recent characteristic research with the institute as first affiliation[10] has been dealing with the encapsulation of multiple dyes into nanocrystalline metal-organic frameworks for energy-efficient lighting devices,[11] the clarification of the real-time formation mechanism of quantum wells for stable and efficient perovskite photovoltaics,[12] the encapsulation of a porous organic cage into the pores of a metal-organic framework for enhanced CO2 separation,[13] the design of metal-organic frameworks for alkane separation[14] and adsorption of noble gases such as xenon,[15] the synthesis of a chemically stable cucurbit[6]uril-based hydrogen-bonded organic framework for SO2/CO2 separation,[16] the first-principles prediction of nitrogen-based transition-metal guanidinates TCN3 and ortho-nitrido carbonates T2CN4 for photoelectrochemistry,[17] the mechanochemical one-pot fabrication of a monolithic cucurbituril−encapsulating metal−organic framework from a flowing gel,[18] and the prediction of BeCN2 as the lightest representative of II–IV–V2 compounds.[19]
By the end of 2021, the institute had published several key papers in outstanding international journals such as the Journal of the American Chemical Society.[20] Based on this achievement, the Shenzhen Polytechnic already made it into the top 200 Chinese institutions within Nature's publication index.[21]
References
[edit]- ^ "Shenzhen Polytechnic (SZPT)". www.natureindex.com. Retrieved 2021-06-13.
- ^ "Ten Nobel prize-winning laboratories tell you: why do top scientists favor Shenzhen?".
- ^ "Nobel prize winner to set up advanced materials lab". www.eyeshenzhen.com/content/2018-01/15/content_18720803.htm. Retrieved 2020-11-16.
- ^ "Focusing on new energy and clean materials, the Hoffmann Institute for Advanced Materials of Shenzhen Polytechnic was inaugurated". www.sznews.com. Retrieved 2021-06-20.
- ^ "Inauguration Ceremony of Hoffmann Institute for Advanced Materials and International Symposium on Advanced Functional Materials". www.szpt.edu.cn. Retrieved 2021-06-18.
- ^ "Inauguration Ceremony of Hoffmann Institute of Advanced Materials and International Symposium on Advanced Functional Materials held at Shenzhen Polytechnic". edu.gd.gov.cn. Archived from the original on 2021-06-24. Retrieved 2021-06-18.
- ^ "The Hoffmann Institute for Advanced Materials of Shenzhen Polytechnic was inaugurated". economy.southcn.com. Retrieved 2021-06-18.
- ^ "Skoltech imaging resources used in international experiment with new photocatalysts". EurekAlert!. Retrieved 2021-06-06.
- ^ "JSPS Core-to-Core Program Project on Mixed Anion Research for Energy Conversion" (in Japanese). Retrieved 2021-06-07.
- ^ "JACS:MOF complete screening of single and double branched isomers of alkanes at the Hoffmann Institute for Advanced Materials, Shenzhen Polytechnic". www.scimall.org.cn. Retrieved 2021-06-18.
- ^ Liu, Xiao-Yuan; Xing, Kai; Li, Yang; Tsung, Chia-Kuang; Li, Jing (2019-09-18). "Three Models To Encapsulate Multicomponent Dyes into Nanocrystal Pores: A New Strategy for Generating High-Quality White Light". Journal of the American Chemical Society. 141 (37): 14807–14813. doi:10.1021/jacs.9b07236. ISSN 0002-7863. PMID 31424923. S2CID 207197172.
- ^ Hu, Hanlin; Qin, Minchao; Fong, Patrick W. K.; Ren, Zhiwei; Wan, Xuejuan; Singh, Mriganka; Su, Chun-Jen; Jeng, U.-Ser; Li, Liang; Zhu, Jiajie; Yuan, Mingjian (2021). "Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaics—A Real-Time Phase-Transition Study". Advanced Materials. 33 (7): 2006238. doi:10.1002/adma.202006238. hdl:10397/103579. ISSN 1521-4095. PMID 33373068. S2CID 229713908.
- ^ Liang, Jun; Nuhnen, Alexander; Millan, Simon; Breitzke, Hergen; Gvilava, Vasily; Buntkowsky, Gerd; Janiak, Christoph (2020). "Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO2 Separation". Angewandte Chemie International Edition. 59 (15): 6068–6073. doi:10.1002/anie.201916002. ISSN 1521-3773. PMC 7187261. PMID 31912916.
- ^ Yu, Liang; Dong, Xinglong; Gong, Qihan; Acharya, Shree Ram; Lin, Yuhan; Wang, Hao; Han, Yu; Thonhauser, Timo; Li, Jing (2020-04-15). "Splitting Mono- and Dibranched Alkane Isomers by a Robust Aluminum-Based Metal–Organic Framework Material with Optimal Pore Dimensions". Journal of the American Chemical Society. 142 (15): 6925–6929. doi:10.1021/jacs.0c01769. hdl:10754/662423. ISSN 0002-7863. PMID 32223142. S2CID 214731360.
- ^ Wang, Hao; Warren, Mark; Jagiello, Jacek; Jensen, Stephanie; Ghose, Sanjit K.; Tan, Kui; Yu, Liang; Emge, Thomas J.; Thonhauser, Timo; Li, Jing (2020-11-25). "Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature-Dependent Breathing Behavior and Unusual Gas Adsorption Phenomenon". Journal of the American Chemical Society. 142 (47): 20088–20097. doi:10.1021/jacs.0c09475. ISSN 0002-7863. OSTI 1749889. PMID 33172264. S2CID 226304618.
- ^ Liang, Jun; Xing, Shanghua; Brandt, Philipp; Nuhnen, Alexander; Schlüsener, Carsten; Sun, Yangyang; Janiak, Christoph (2020-10-06). "A chemically stable cucurbit[6]uril-based hydrogen-bonded organic framework for potential SO2/CO2 separation". Journal of Materials Chemistry A. 8 (38): 19799–19804. doi:10.1039/D0TA07457H. ISSN 2050-7496. S2CID 226468045.
- ^ Luo, Dongbao; Qiao, Xianji; Dronskowski, Richard (2021). "Predicting Nitrogen-Based Families of Compounds: Transition-Metal Guanidinates TCN3 (T=V, Nb, Ta) and Ortho-Nitrido Carbonates T′2CN4 (T′=Ti, Zr, Hf)". Angewandte Chemie International Edition. 60 (1): 486–492. doi:10.1002/anie.202011196. ISSN 1521-3773. PMC 7821139. PMID 33001558.
- ^ Liang, Jun; Gvilava, Vasily; Jansen, Christian; Öztürk, Secil; Spieß, Alex; Lin, Jingxiang; Xing, Shanghua; Sun, Yangyang; Wang, Hao; Janiak, Christoph (2021). "Cucurbituril−Encapsulating Metal−Organic Framework via Mechanochemistry: Adsorbents with Enhanced Performance". Angewandte Chemie International Edition. 60 (28): 15365–15370. doi:10.1002/anie.202100675. ISSN 1521-3773. PMC 8362037. PMID 33974329.
- ^ Luo, Dongbao; Yin, Ketao; Dronskowski, Richard (2022-03-23). "Existence of BeCN2 and Its First-Principles Phase Diagram: Be and C Introducing Structural Diversity". Journal of the American Chemical Society. 144 (11): 5155–5162. doi:10.1021/jacs.2c00592. ISSN 0002-7863. PMID 35285235. S2CID 247437316.
- ^ "JACS is so mighty. Who is JACS?".
- ^ "Small but great".
External links
[edit]