Hydrogenosome
A hydrogenosome is a membrane-enclosed organelle of some anaerobic ciliates, trichomonads and fungi. The hydrogenosomes of trichomonads (the most studied of the hydrogenosome-containing microorganisms) produce molecular hydrogen, acetate, carbon dioxide and ATP by the combined actions of pyruvate:ferredoxin oxido-reductase, hydrogenase, acetate:succinate CoA transferase and succinate thiokinase. Superoxide dismutase, malate dehydrogenase (decarboxylating), ferredoxin, adenylate kinase and NADH:ferredoxin oxido-reductase are also localized in the hydrogenosome. It is nearly universally accepted that Hydrogenosomes evolved from mitochondria.
In 2010, scientists reported their discovery of the first known anaerobic metazoans with hydrogenosome-like organelles.[2]
History
Hydrogenosomes were isolated, purified, biochemically characterized and named in the early 1970s by D. G. Lindmark and M. Müller at Rockefeller University.[3] In addition to this seminal study on hydrogenosomes, they also demonstrated, for the first time, the presence of pyruvate:ferredoxin oxido-reductase and hydrogenase in eukaryotes. Further studies were subsequently conducted on the biochemical cytology and subcellular organization of anaerobic protozoan parasites (Trichomonas vaginalis, Tritrichomonas foetus, Monocercomonas sp., Giardia lamblia, Entamoeba sp., and Hexamita inflata). Using information obtained from hydrogenosomal and biochemical cytology studies these researchers determined the mode of action of metronidazole (Flagyl) in 1976. Metronidazole is today recognized as the gold standard chemotherapeutic agent for the treatment of anaerobic infections caused by prokaryotes (Clostridium, Bacteroides, Helicobacter) and eukaryotes (Trichomonas, Tritrichomonas, Giardia, Entamoeba). Metronidazole is taken up by diffusion. Once taken up by anaerobes, it is non-enzymatically reduced by reduced ferredoxin which is produced by the action of pyruvate:ferredoxin oxido-reductase. This reduction creates products toxic to the anaerobic cell, and allows for selective accumulation of the drug in anaerobes.
Description
Hydrogenosomes are approximately 1 micrometre in diameter but under stress conditions can reach up to 2 micrometre [4] and are so called because they produce molecular hydrogen. Like mitochondria, they are bound by distinct double membranes and one has an inner membrane with some cristae-like projections. Some hydrogenosomes may have evolved from mitochondria by the concomitant loss of classical mitochondrial features, most notably its genome. A hydrogenosomal genome could not be detected in Neocallimastix, Trichomonas vaginalis and Tritrichomonas foetus.[5] However, a hydrogenosomal genome has been detected in the cockroach ciliate Nyctotherus ovalis,[6] and the stramenopile Blastocystis. The similarity between Nyctotherus and Blastocystis, which are only distantly related, is believed to be the result of convergent evolution, and calls into question whether there is a clear-cut distinction between mitochondria, hydrogenosomes, and mitosomes (another kind of degenerate mitochondria).[7]
Sources
The best studied hydrogenosomes are those of the sexually transmitted parasites Trichomonas vaginalis and Tritrichomonas foetus and those from rumen chytrids such as Neocallimastix.
The anaerobic ciliated protozoan Nyctotherus ovalis, found in the hindgut of several species of cockroach, has numerous hydrogenosomes that are intimately associated with endosymbiotic methane-producing archaea, the latter using the hydrogen produced by the hydrogenosomes. The matrix of N. ovalis hydrogenosomes contains ribosome-like particles of the same size as a numerous type of ribosome (70s) of the endosymbiotic methanogenic archaea. This suggested the presence of an organellar genome which was indeed discovered by Akhmanova and later partly sequenced by Boxma.[6][8]
Three multicellular species of Loricifera — Spinoloricus nov. sp., Rugiloricus nov. sp. and Pliciloricus nov. sp. — have been found deep in Mediterranean sediments, and use hydrogenosomes in their anaerobic metabolism cycle.[9][10]
References
- ^ Müller M, Lindmark DG (February 1978). "Respiration of hydrogenosomes of Tritrichomonas foetus. II. Effect of CoA on pyruvate oxidation". J. Biol. Chem. 253 (4): 1215–8. PMID 624726.
- ^ Danovaro R, Dell'anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (April 2010). "The first metazoa living in permanently anoxic conditions". BMC Biol. 8 (1): 30. doi:10.1186/1741-7007-8-30. PMC 2907586. PMID 20370908.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ Lindmark DG, Müller M (November 1973). "Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism". J. Biol. Chem. 248 (22): 7724–8. PMID 4750424.
- ^ Benchimol, M (2009). "Hydrogenosomes under microscopy". Tissue & cell. 41 (3): 151–68. doi:10.1016/j.tice.2009.01.001. PMID 19297000.
- ^ van der Giezen M, Tovar J, Clark CG (2005). "Mitochondrion-derived organelles in protists and fungi". Int. Rev. Cytol. 244: 175–225. doi:10.1016/S0074-7696(05)44005-X. PMID 16157181.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b Akhmanova A, Voncken F, van Alen T; et al. (December 1998). "A hydrogenosome with a genome". Nature. 396 (6711): 527–8. doi:10.1038/25023. PMID 9859986.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - ^ Stechmann, A; Hamblin, K; Pérez-brocal, V; Gaston, D; Richmond, Gs; Van, Der; Clark, Cg; Roger, Aj (Apr 2008). "Organelles in Blastocystis that Blur the Distinction between Mitochondria and Hydrogenosomes". Current biology : CB. 18 (8): 580–5. doi:10.1016/j.cub.2008.03.037. PMC 2428068. PMID 18403202.
- ^ Boxma B, de Graaf RM, van der Staay GW; et al. (March 2005). "An anaerobic mitochondrion that produces hydrogen". Nature. 434 (7029): 74–9. doi:10.1038/nature03343. PMID 15744302.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - ^ Fang, Janet (April 6, 2010). "Animals thrive without oxygen at sea bottom". Nature. 464 (7290). Nature Publishing Group: 825. doi:10.1038/464825b. PMID 20376121. Retrieved April 6, 2010.
- ^ Roberto Danovaro; et al. (2010). "The first metazoa living in permanently anoxic conditions". BMC Biology. 8 (30): 30. doi:10.1186/1741-7007-8-30. PMC 2907586. PMID 20370908.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: unflagged free DOI (link)