Clostridium

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Clostridium
Photomicrograph of "Clostridium botulinum" bacteria stained with crystal violet
Photomicrograph of Clostridium botulinum bacteria stained with crystal violet
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Clostridium

Selected species

Clostridium absonum
Clostridium aceticum
Clostridium acetireducens
Clostridium acetobutylicum
Clostridium acidisoli
Clostridium aciditolerans
Clostridium acidurici
Clostridium aerotolerans
Clostridium aestuarii
Clostridium akagii
Clostridium aldenense
Clostridium aldrichii
Clostridium algidicarnis
Clostridium algidixylanolyticum
Clostridium algifaecis
Clostridium algoriphilum
Clostridium alkalicellulosi
Clostridium amazonense[1]
Clostridium aminophilum
Clostridium aminovalericum
Clostridium amygdalinum
Clostridium amylolyticum
Clostridium arbusti
Clostridium arcticum
Clostridium argentinense
Clostridium asparagiforme
Clostridium aurantibutyricum
Clostridium autoethanogenum
Clostridium baratii
Clostridium bartlettii
Clostridium beijerinckii
Clostridium bifermentans
Clostridium bolteae
Clostridium bornimense
Clostridium botulinum
Clostridium bowmanii
Clostridium bryantii
Clostridium butyricum
Clostridium cadaveris
Clostridium caenicola
Clostridium caminithermale
Clostridium carboxidivorans
Clostridium carnis
Clostridium cavendishii
Clostridium celatum
Clostridium celerecrescens
Clostridium cellobioparum
Clostridium cellulofermentans
Clostridium cellulolyticum
Clostridium cellulosi
Clostridium cellulovorans
Clostridium chartatabidum
Clostridium chauvoei
Clostridium chromiireducens
Clostridium citroniae
Clostridium clariflavum
Clostridium clostridioforme
Clostridium coccoides
Clostridium cochlearium
Clostridium colletant
Clostridium cocleatum
Clostridium colicanis
Clostridium colinum
Clostridium collagenovorans
Clostridium cylindrosporum
Clostridium difficile
Clostridium diolis
Clostridium disporicum
Clostridium drakei
Clostridium durum
Clostridium estertheticum
Clostridium estertheticum estertheticum
Clostridium estertheticum laramiense
Clostridium fallax
Clostridium felsineum
Clostridium fervidum
Clostridium fimetarium
Clostridium formicaceticum
Clostridium frigidicarnis
Clostridium frigoris
Clostridium ganghwense
Clostridium gasigenes
Clostridium ghonii
Clostridium glycolicum
Clostridium glycyrrhizinilyticum
Clostridium grantii
Clostridium haemolyticum
Clostridium halophilum
Clostridium hastiforme
Clostridium hathewayi
Clostridium herbivorans
Clostridium hiranonis
Clostridium histolyticum
Clostridium homopropionicum
Clostridium huakuii
Clostridium hungatei
Clostridium hydrogeniformans
Clostridium hydroxybenzoicum
Clostridium hylemonae
Clostridium jeddahense[1]
Clostridium jejuense
Clostridium indolis
Clostridium innocuum
Clostridium intestinale
Clostridium irregulare
Clostridium isatidis
Clostridium josui
Clostridium kluyveri
Clostridium lactatifermentans
Clostridium lacusfryxellense
Clostridium laramiense
Clostridium lavalense
Clostridium lentocellum
Clostridium lentoputrescens
Clostridium leptum
Clostridium limosum
Clostridium litorale
Clostridium liquoris[1]
Clostridium lituseburense
Clostridium ljungdahlii
Clostridium lortetii
Clostridium lundense
Clostridium luticellarii[1]
Clostridium magnum
Clostridium malenominatum
Clostridium mangenotii
Clostridium mayombei
Clostridium maximum[1]
Clostridium methoxybenzovorans
Clostridium methylpentosum
Clostridium moniliforme[1]
Clostridium neopropionicum
Clostridium nexile
Clostridium nitrophenolicum
Clostridium novyi
Clostridium oceanicum
Clostridium orbiscindens
Clostridium oroticum
Clostridium oryzae[1]
Clostridium oxalicum
Clostridium papyrosolvens
Clostridium paradoxum
Clostridium paraperfringens (Alias: C. welchii)
Clostridium paraputrificum
Clostridium pascui
Clostridium pasteurianum
Clostridium peptidivorans
Clostridium perenne
Clostridium perfringens
Clostridium pfennigii
Clostridium phytofermentans
Clostridium piliforme
Clostridium polysaccharolyticum
Clostridium polyendosporum[1]
Clostridium populeti
Clostridium propionicum
Clostridium proteoclasticum
Clostridium proteolyticum
Clostridium psychrophilum
Clostridium puniceum
Clostridium punense[1]
Clostridium purinilyticum
Clostridium putrefaciens
Clostridium putrificum
Clostridium quercicolum
Clostridium quinii
Clostridium ramosum
Clostridium rectum
Clostridium roseum
Clostridium saccharobutylicum
Clostridium saccharogumia
Clostridium saccharolyticum
Clostridium saccharoperbutylacetonicum
Clostridium sardiniense
Clostridium sartagoforme
Clostridium saudiense [1]
Clostridium senegalense[1]
Clostridium scatologenes
Clostridium schirmacherense
Clostridium scindens
Clostridium septicum
Clostridium sordellii
Clostridium sphenoides
Clostridium spiroforme
Clostridium sporogenes
Clostridium sporosphaeroides
Clostridium stercorarium
Clostridium stercorarium leptospartum
Clostridium stercorarium stercorarium
Clostridium stercorarium thermolacticum
Clostridium sticklandii
Clostridium straminisolvens
Clostridium subterminale
Clostridium sufflavum
Clostridium sulfidigenes
Clostridium swellfunianum[1]
Clostridium symbiosum
Clostridium tagluense
Clostridium tarantellae[1]
Clostridium tepidiprofundi
Clostridium termitidis
Clostridium tertium
Clostridium tetani
Clostridium tetanomorphum
Clostridium thermaceticum
Clostridium thermautotrophicum
Clostridium thermoalcaliphilum
Clostridium thermobutyricum
Clostridium thermocellum
Clostridium thermocopriae
Clostridium thermohydrosulfuricum
Clostridium thermolacticum
Clostridium thermopalmarium
Clostridium thermopapyrolyticum
Clostridium thermosaccharolyticum
Clostridium thermosuccinogenes
Clostridium thermosulfurigenes
Clostridium thiosulfatireducens
Clostridium tyrobutyricum
Clostridium uliginosum
Clostridium ultunense
Clostridium ventriculi[1]
Clostridium villosum
Clostridium vincentii
Clostridium viride
Clostridium vulturis[1]
Clostridium xylanolyticum
Clostridium xylanovorans

Clostridium is a genus of Gram-positive bacteria. This genus includes several significant human pathogens, including the causative agents of botulism and tetanus. The genus formerly included an important cause of diarrhea, Clostridioides difficile, which was separated after 16S rRNA analysis. They are obligate anaerobes capable of producing endospores. The normal, reproducing cells of Clostridium, called the vegetative form, are rod-shaped, which gives them their name, from the Greek κλωστήρ or spindle. Clostridium endospores have a distinct bowling pin or bottle shape, distinguishing them from other bacterial endospores, which are usually ovoid in shape. Clostridium species inhabit soils and the intestinal tract of animals, including humans.[2] Clostridium is a normal inhabitant of the healthy lower reproductive tract of women.[3]

The gut microbiota of healthy humans contains commensal Clostridium bacteria.[4] Species from Clostridium cluster XIVa and Clostridium cluster IV are important in human guts, but despite the naming, these clusters encompass many bacteria outside the genus Clostridium.[4]

Overview[edit]

Clostridium contains around 100 species that include common free-living bacteria, as well as important pathogens.[5] The main species responsible for disease in humans are:[6]

Bacillus and Clostridium are often described as gram-variable, because they show an increasing number of gram-negative cells as the culture ages.[8]

Clostridium and Bacillus are both in the phylum Firmicutes, but they are in different classes, orders, and families. Microbiologists distinguish Clostridium from Bacillus by the following features:[2]

  • Clostridium grows in anaerobic conditions; Bacillus grows in aerobic conditions.
  • Clostridium forms bottle-shaped endospores; Bacillus forms oblong endospores.
  • Clostridium does not form the enzyme catalase; Bacillus secretes catalase to destroy toxic byproducts of oxygen metabolism.

Clostridium and Desulfotomaculum are both in the class Clostridia and order Clostridiales, and they both produce bottle-shaped endospores, but they are in different families. Clostridium can be distinguished from Desulfotomaculum on the basis of the nutrients each genus uses (the latter requires sulfur).

Glycolysis and fermentation of pyruvic acid by Clostridia yield the end products butyric acid, butanol, acetone, isopropanol, and carbon dioxide.[8]

The Schaeffer-Fulton stain (0.5% malachite green in water) can be used to distinguish endospores of Bacillus and Clostridium from other microorganisms.[9] There is a commercially available polymerase chain reaction (PCR) test kit (Bactotype) for the detection of C. perfringens and other pathogenic bacteria.[10]

Treatment[edit]

In general, the treatment of clostridial infection is high-dose penicillin G, to which the organism has remained susceptible.[11] Clostridium welchii and Clostridium tetani respond to sulfonamides.[12] Clostridia are also susceptible to tetracyclines, carbapenems (imipenem), metronidazole, vancomycin, and chloramphenicol.[13]

The vegetative cells of clostridia are heat-labile and are killed by short heating at temperatures above 72–75 °C. The thermal destruction of Clostridium spores requires higher temperatures (above 121.1 °C, for example in an autoclave) and longer cooking times (20 min, with a few exceptional cases of > 50 min recorded in the literature). Clostridia and Bacilli are quite radiation-resistant, requiring doses of about 30 kGy, which is a serious obstacle to the development of shelf-stable irradiated foods for general use in the retail market.[14] The addition of lysozyme, nitrate, nitrite and propionic acid salts inhibits clostridia in various foods.[15][16][17]

Fructooligosaccharides (fructans) such as inulin, occurring in relatively large amounts in a number of foods such as chicory, garlic, onion, leek, artichoke, and asparagus, have a prebiotic or bifidogenic effect, selectively promoting the growth and metabolism of beneficial bacteria in the colon, such as bifidobacteria and lactobacilli, while inhibiting harmful ones, such as clostridia, fusobacteria, and bacteroides.[18]

History[edit]

In the late 1700s, Germany experienced a number of outbreaks of an illness that seemed connected to eating certain sausages. In 1817, the German neurologist Justinus Kerner detected rod-shaped cells in his investigations into this so-called sausage poisoning. In 1897, the Belgian biology professor Emile van Ermengem published his finding of an endospore-forming organism he isolated from spoiled ham. Biologists classified van Ermengem's discovery along with other known gram-positive spore formers in the genus Bacillus. This classification presented problems, however, because the isolate grew only in anaerobic conditions, but Bacillus grew well in oxygen.[2]

Circa 1880, in the course of studying fermentation and butyric acid synthesis, a scientist surnamed Prazmowski first assigned a binomial name to Clostridium butyricum.[19]:107–108 The mechanisms of anaerobic respiration were still not yet well elucidated at that time,[19]:107–108 so taxonomy of anaerobes was still nascent.

In 1924, Ida A. Bengtson separated van Ermengem's microorganisms from the Bacillus group and assigned them to the genus Clostridium. By Bengtson's classification scheme, Clostridium contained all of the anaerobic endospore-forming rod-shaped bacteria, except the genus Desulfotomaculum.[2]

Use[edit]

References[edit]

  1. ^ a b c d e f g h i j k l m n o Parte AC. "Clostridium". www.bacterio.net.
  2. ^ a b c d e Maczulak A (2011), "Clostridium", Encyclopedia of Microbiology, Facts on File, pp. 168–173, ISBN 978-0-8160-7364-1
  3. ^ Hoffman B (2012). Williams gynecology (2nd ed.). New York: McGraw-Hill Medical. p. 65. ISBN 978-0071716727.
  4. ^ a b Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A (August 2013). "Commensal Clostridia: leading players in the maintenance of gut homeostasis". Gut Pathogens. 5 (1): 23. doi:10.1186/1757-4749-5-23. PMC 3751348. PMID 23941657.
  5. ^ UK Standards for Microbiology Investigations (October 10, 2011). "Identification of Clostridium Species". Standards Unit, Health Protection Agency. p. 7. 8. Retrieved November 3, 2013.
  6. ^ Baron S, et al., eds. (1996). "Clostridia: Sporeforming Anaerobic Bacilli". Baron's Medical Microbiology (4th ed.). Univ. of Texas Medical Branch. ISBN 978-0-9631172-1-2.
  7. ^ Meites E, Zane S, Gould C (September 2010). "Fatal Clostridium sordellii infections after medical abortions". The New England Journal of Medicine. 363 (14): 1382–3. doi:10.1056/NEJMc1001014. PMID 20879895.
  8. ^ a b c Tortora GJ, Funke BR, Case CL (2010), Microbiology: An Introduction (10th ed.), Benjamin Cummings, pp. 87, 134, 433, ISBN 978-0-321-55007-1
  9. ^ Maczulak A (2011), "stain", Encyclopedia of Microbiology, Facts on File, pp. 726–729, ISBN 978-0-8160-7364-1
  10. ^ Willems H, Jäger C, Reiner G (2007), "Polymerase Chain Reaction", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–27, doi:10.1002/14356007.c21_c01.pub2, ISBN 978-3527306732
  11. ^ Leikin JB, Paloucek FP, eds. (2008), "Clostridium perfringens Poisoning", Poisoning and Toxicology Handbook (4th ed.), Informa, pp. 892–893, ISBN 978-1-4200-4479-9
  12. ^ Actor P, Chow AW, Dutko FJ, McKinlay MA (2007), "Chemotherapeutics", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–61, doi:10.1002/14356007.a06_173, ISBN 978-3527306732
  13. ^ Harvey RA, ed. (2012), Lippincott's Illustrated Reviews: Pharmacology (5th ed.), Lippincott, pp. 389–404, ISBN 978-1-4511-1314-3
  14. ^ Jelen P (2007), "Foods, 2. Food Technology", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–38, doi:10.1002/14356007.a11_523, ISBN 978-3527306732
  15. ^ Burkhalter G, Steffen C, Puhan Z (2007), "Cheese, Processed Cheese, and Whey", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–11, doi:10.1002/14356007.a06_163, ISBN 978-3527306732
  16. ^ Honikel K (2007), "Meat and Meat Products", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–17, doi:10.1002/14356007.e16_e02.pub2, ISBN 978-3527306732
  17. ^ Samel Ul, Kohler W, Gamer AO, Keuser U (2007), "Propionic Acid and Derivatives", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–18, doi:10.1002/14356007.a22_223, ISBN 978-3527306732
  18. ^ Zink R, Pfeifer A (2007), "Health Value Added Foods", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–12, doi:10.1002/14356007.d12_d01, ISBN 978-3527306732
  19. ^ a b Newman G (1904), Bacteriology and the Public Health, P. Blakiston's Son and Company.
  20. ^ Velickovic M, Benabou R, Brin MF (2001). "Cervical dystonia pathophysiology and treatment options". Drugs. 61 (13): 1921–43. doi:10.2165/00003495-200161130-00004. PMID 11708764.
  21. ^ Doherty GM, ed. (2005), "Inflammation, Infection, & Antimicrobial Therapy", Current Diagnosis & Treatment: Surgery, McGraw-Hill, ISBN 978-0-07-159087-7
  22. ^ "Providing for a Sustainable Energy Future". Bioengineering Resources, inc. Retrieved 21 May 2007.
  23. ^ Saint-Amans, S.; Perlot, P.; Goma, G.; Soucaille, P. (August 1994). "High production of 1,3-propanediol from gycerol by clostridium butyricum VPI 3266 in a simply controlled fed-batch system". Biotechnology Letters. 16 (8): 831–836. doi:10.1007/BF00133962. Retrieved 2019-07-08.
  24. ^ Mengesha; et al. (2009). "Clostridia in Anti-tumor Therapy". Clostridia: Molecular Biology in the Post-genomic Era. Caister Academic Press. ISBN 978-1-904455-38-7.
  25. ^ Chou CH, Han CL, Chang JJ, Lay JJ (October 2011). "Co-culture of Clostridium beijerinckii L9, Clostridium butyricum M1 and Bacillus thermoamylovorans B5 for converting yeast waste into hydrogen". International Journal of Hydrogen Energy. 36 (21): 13972–13983. doi:10.1016/j.ijhydene.2011.03.067.

External links[edit]