Liquid hydrogen

From Wikipedia, the free encyclopedia
  (Redirected from Liquid Hydrogen)
Jump to: navigation, search
Liquid hydrogen
IUPAC name
Liquid hydrogen
Other names
Hydrogen (cryogenic liquid); hydrogen, refrigerated liquid; LH2, para-hydrogen
3D model (Jmol)
RTECS number MW8900000
UN number 1966
Molar mass 2.02 g·mol−1
Appearance Colorless liquid
Density 70.85 g/L (4.423 lb/cu ft)[1]
Melting point −259.14 °C (14.01 K; −434.45 °F)[2]
Boiling point −252.87 °C (20.28 K; −423.17 °F)[2]
Highly flammable (F+)
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
571 °C (1,060 °F; 844 K)[2]
Explosive limits LEL 4.0%; UEL 74.2% (in air)[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Liquid hydrogen (LH2 or LH2) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form.

To exist as a liquid, H2 must be cooled below hydrogen's critical point of 33 K. However, for hydrogen to be in a fully liquid state without boiling at atmospheric pressure, it needs to be cooled to 20.28 K[3] (−423.17 °F/−252.87 °C).[4][5] One common method of obtaining liquid hydrogen involves a compressor resembling a jet engine in both appearance and principle. Liquid hydrogen is typically used as a concentrated form of hydrogen storage. As in any gas, storing it as liquid takes less space than storing it as a gas at normal temperature and pressure. However, the liquid density is very low compared to other common fuels. Once liquefied, it can be maintained as a liquid in pressurized and thermally insulated containers.

Liquid hydrogen consists of 99.79% parahydrogen, 0.21% orthohydrogen.[6]


In 1885 Zygmunt Florenty Wróblewski published hydrogen's critical temperature as 33 K; critical pressure, 13.3 atmospheres; and boiling point, 23 K.

Hydrogen was liquefied by James Dewar in 1898 by using regenerative cooling and his invention, the vacuum flask. The first synthesis of the stable isomer form of liquid hydrogen, parahydrogen, was achieved by Paul Harteck and Karl Friedrich Bonhoeffer in 1929.

Spin isomers of hydrogen[edit]

Room–temperature hydrogen consists mostly of the orthohydrogen form. After production, liquid hydrogen is in a metastable state and must be converted into the parahydrogen isomer form to avoid the exothermic reaction that occurs when it changes at low temperatures; this is usually performed using a catalyst like iron(III) oxide, activated carbon, platinized asbestos, rare earth metals, uranium compounds, chromium(III) oxide, or some nickel compounds.[7]


Liquid hydrogen is a common liquid rocket fuel for rocket applications – both NASA and U.S. Air Force operate a large number of liquid hydrogen tanks with an individual capacity up to 1 million U.S. gallons (3.8 million liters).[8] In most rocket engines fueled by liquid hydrogen, it first cools the nozzle and other parts before being mixed with the oxidizer (usually liquid oxygen (LOX)) and burned to produce water with traces of ozone and hydrogen peroxide. Practical H2–O2 rocket engines run fuel-rich so that the exhaust contains some unburned hydrogen. This reduces combustion chamber and nozzle erosion. It also reduces the molecular weight of the exhaust which can actually increase specific impulse despite the incomplete combustion.

Liquid Hydrogen
DOT Hazardous Material Placard liquid hydrogen.jpg
RTECS MW8900000
PEL-OSHA Simple asphyxiant
ACGIH TLV-TWA Simple asphyxiant

Liquid hydrogen can be used as the fuel for an internal combustion engine or fuel cell. Various submarines (Type 212 submarine, Type 214 submarine) and concept hydrogen vehicles have been built using this form of hydrogen (see DeepC, BMW H2R). Due to its similarity, builders can sometimes modify and share equipment with systems designed for LNG. However, because of the lower volumetric energy, the hydrogen volumes needed for combustion are large. Unless LH2 is injected instead of gas, hydrogen-fueled piston engines usually require larger fuel systems. Unless direct injection is used, a severe gas-displacement effect also hampers maximum breathing and increases pumping losses.

Liquid hydrogen is also used to cool neutrons to be used in neutron scattering. Since neutrons and hydrogen nuclei have similar masses, kinetic energy exchange per interaction is maximum (elastic collision). Finally, superheated liquid hydrogen was used in many bubble chamber experiments.

The first thermonuclear bomb, Ivy Mike, used liquid deuterium (Hydrogen-2), for nuclear fusion.


A massive hydrogen tank at Lewis Research Center in 1967

The product of its combustion with oxygen alone is water vapor (although if its combustion is with oxygen and nitrogen it can form toxic chemicals), which can be cooled with some of the liquid hydrogen. Since water is harmless to the environment, an engine burning it can be considered "zero emissions." Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel.[9]

The density of liquid hydrogen is only 70.99 g/L (at 20 K), a relative density of just 0.07. Although the specific energy is around twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.

Liquid hydrogen requires cryogenic storage technology such as special thermally insulated containers and requires special handling common to all cryogenic fuels. This is similar to, but more severe than liquid oxygen. Even with thermally insulated containers it is difficult to keep such a low temperature, and the hydrogen will gradually leak away (typically at a rate of 1% per day[9]). It also shares many of the same safety issues as other forms of hydrogen, as well as being cold enough to liquefy (and possibly solidify) atmospheric oxygen which can be an explosion hazard.

The triple point of hydrogen is at 13.81 K[3] 7.042 kPa.[10]

See also[edit]

Tank for liquid hydrogen of Linde, Museum Autovision, Altlußheim, Germany


  1. ^ Thermophysical Properties of Hydrogen ,, accessed 2012-09-14
  2. ^ a b c d Information specific to liquid hydrogen,, accessed 2009-06-12
  3. ^ a b IPTS-1968,, accessed 2009-06-12
  4. ^ Chemical elements data references
  5. ^ Properties Of Gases. Retrieved on 2011-08-28.
  6. ^ Liquid Air/LH2. Retrieved on 2011-08-28.
  7. ^ Ortho-Para conversion. Page 13. (PDF) . Retrieved on 2011-08-28.
  8. ^ Flynn, Thomas (2004). Cryogenic Engineering, Second Edition, Revised and Expanded. CRC Press. p. 401. ISBN 978-0-203-02699-1. 
  9. ^ a b Hydrogen As an Alternative Fuel. Retrieved on 2011-08-28.
  10. ^ Yunus A. Cengel, Robert H. Turner. Fundamentals of thermal-fluid sciences, McGraw-Hill, 2004, p. 78, ISBN 0-07-297675-6