# Magnetic effective resistance

Magnetic effective resistance (SI Unit: -Ω−1) is the real component of complex magnetic impedance of a circuit in the gyrator-capacitor model. This causes a magnetic circuit to lose magnetic potential energy.[1][2][3]

Active power in a magnetic circuit equals the product of magnetic effective resistance ${\displaystyle r_{\mathrm {M} }}$ and magnetic current squared ${\displaystyle I_{\mathrm {M} }^{2}}$.

${\displaystyle P=r_{\mathrm {M} }I_{\mathrm {M} }^{2}}$

The magnetic effective resistance on a complex plane appears as the side of the resistance triangle for magnetic circuit of an alternating current. The effective magnetic resistance is bounding with the effective magnetic conductance ${\displaystyle g_{\mathrm {M} }}$ by the expression

${\displaystyle g_{\mathrm {M} }={\frac {r_{\mathrm {M} }}{z_{\mathrm {M} }^{2}}}}$

where ${\displaystyle z_{\mathrm {M} }}$ is the full magnetic impedance of a magnetic circuit.

## References

1. ^ Pohl R. W. ELEKTRIZITÄTSLEHRE. – Berlin-Gottingen-Heidelberg: SPRINGER-VERLAG, 1960.
2. ^ Popov V. P. The Principles of Theory of Circuits. – M.: Higher School, 1985, 496 p. (In Russian).
3. ^ Küpfmüller K. Einführung in die theoretische Elektrotechnik, Springer-Verlag, 1959.