Microbat

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Nordliam (talk | contribs) at 02:19, 10 May 2017 (→‎Laryngeally echolocating microbats). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Microbats
Townsend's big-eared bat, Corynorhinus townsendii
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Suborder:
Microchiroptera

Dobson, 1875
Superfamilies

Emballonuroidea
Rhinopomatoidea
Rhinolophoidea
Vespertilionoidea
Molossoidea
Nataloidea
Noctilionoidea

The microbats constitute the now outdated suborder Microchiroptera within the order Chiroptera (bats). Bats were once differentiated into Megachiroptera and Microchiroptera, based on their size; but available molecular evidence has now shown this to be incorrect, the horseshoe bats being included in Yinpterochiroptera with the fruit bats and others. Most species which were termed Microchiroptera are now referred to as the Yangochiroptera.

Definition

The distinctions between microbats and megabats are:

  • Microbats use echolocation, whereas megabats do not typically. (The Egyptian fruit bat Rousettus egyptiacus is an exception, but does not use the larynx echolocation method of microbats, instead giving scientists the theory that it clicks using its nasal passages and back of its tongue.)
  • Microbats lack the claw at the second finger of the forelimb. This finger appears thinner and almost bonded by tissue with the third finger for extra support during flight.
  • Megabats always lack a tail, whereas this trait only occurs in certain species of microbats.
  • The ears of microbats possess a tragus (thought to be crucial in echolocation) and are respectively larger than megabat ears, whereas megabat ears are comparatively small and lack a tragus.
  • Megabat eyes are quite large, whereas microbat eyes are comparatively smaller.

Characteristics

Microbats are 4 to 16 cm long.[1]

Most microbats feed on insects. Some of the larger species hunt birds, lizards, frogs, smaller bats or even fish.

The only three species of microbat that feed on the blood of large mammals or birds ("vampire bats") live in South and Central America.

The term "leaf-nose" does not indicate the diet preferred by particular species and is applied to a wide variety of microbats.[2] Most leaf-nosed microbat species are fruit and nectar-eating. However, three species follow the bloom of columnar cacti in northwest Mexico and the Southwest United States northward in the northern spring and then the blooming agaves southward in the northern fall (autumn).[3] Other leaf-nosed bats, such as Vampyrum spectrum of South America, hunt a variety of prey such as lizards and birds. The horseshoe bats of Europe and California leaf-nosed bat have an incredibly intricate leaf-nose for echolocation and feed primarily on insects.

Echolocation

Echolocation is the process of producing sounds of a certain wavelength, and then listening to and comparing the reflected echoes to the original sound emitted. Bats use echolocation to form images of their surrounding environment and the organisms that inhabit it by eliciting ultrasonic waves via their larynx.[4][5] The difference between the ultrasonic waves produced by the bat and what the bat hears provides the bat with information about its environment. Echolocation aids the bat in not only detecting prey, but also in orientation during flight.[6]

Production of ultrasonic waves

Microbats generate ultrasound via the larynx and emit the sound through the nose or the open mouth.[7] Vocalizations[disambiguation needed] are generated from the vocal folds in mammals due to the elastic membranes that compose these folds. Vocalization requires these elastic membranes because they act as a source to transform airflow into acoustic pressure waves. Energy is supplied to the elastic membranes from the lungs, and results in the production of sound. The larynx houses the vocal cords and forms the passage way for the expiratory air that will produce sound.[8] Microbat calls range in frequency from 14,000 to over 100,000 hertz, well beyond the range of the human ear (typical human hearing range is considered to be from 20 to 20,000 Hz). The emitted vocalizations form a broad beam of sound used to probe the environmhhent, as well as communicateith other bats.

Laryngeally echolocating microbats

Ventral view of a Florida Freetail bat (tadarida cyanocephala) skull, highlighting both the stylohyal and tympanic bones. Specimen from the Pacific Lutheran University Natural History collection.

Laryngeal echolocation is the dominant form of echolocation in microbats, however it is not the only way in which microbats can produce ultrasonic waves. Excluding non-echolocating and laryngeally echolocating microbats, other species of microbats and megabats have been show to produce ultrasonic waves by clapping their wings, clicking their tongues, or using their nose.[4] Laryngeally echolocating bats, in general, produce ultrasonic waves with their larynx that is specialized to produce sounds of short wavelength. The larynx is located at the cranial end of the trachea and is surrounded by cricothyroid muscles and thyroid cartilage. Phonation of ultrasonic waves are produced through the vibrations of the vocal membranes in the expiratory air. The intensity that these vocal folds vibrate at varies with activity and bat species.[9] A characteristic of laryngeally echolocating bats that distinguishes it from other bats is the articulation of their stylohyal bone with their tympanic bone. The stylohyal bones are part of the hyoid apparatus that help support the throat and larynx. The tympanic bone forms the floor of the middle ear. In addition to the connection between the stylohyal bone and the tympanic bone as being an indicator of laryngeally echolocating bats, another definitive marker is the presence of a flattened and expanded stylohyal bone at the cranial end.[5] Microbats that laryngeally echolocate must be able to distinguish between the differences of the pulse that they produce and the returning echo that follows by being able to process and understand the ultrasonic waves at a neuronal level in order to accurately obtain information about the surrounding environment and their orientation in it.[4] The connection between the stylohyal bone and the tympanic bone enables the bat to neurally register the outgoing and incoming ultrasonic waves produced by the larynx.[6] Another significant feature of this bony connection is that the stylohyal bones connect the larynx to the tympanic bones via a cartilaginous or fibrous connection (depending on the species of bat). Mechanically the importance of this connection is that it supports the larynx by anchoring it to the surrounding cricothryroid muscles, as well as draws it closer to the nasal cavity during phonation. The stylohyal bones are often reduced in many other mammals, however, they are more prominent in laryngeally echolocating bats and are part of the mammalian hyoid apparatus. The hyoid apparatus functions in breathing, swallowing, and phonation in bats as well as other mammals. An important feature of the bony connection in laryngeally echolocating microbats is the extended articulation of the ventral portion of the tympanic bones and the proximal end of the stylohyal bone that bends around it to make this connection.[4]

Other

The human vocalization system has been extensively studied, and as a result, is the most well understood compared to any other mammal. It has been instrumental in increasing our understanding of the vocalization systems of other mammals, including microbats. In the past, the human vocalization system was believed to be unique when compared to any of the other mammal vocalization systems, because of the ability to produce language and song. However, data has demonstrated that the human vocalization system is relatively similar to other mammal vocalization systems. A common theme that has been identified in all tetrapods, including humans and microbats: (1) a respiratory system with lungs; (2) a vocal tract that filters emitted sound before it exits into the surrounding environment; and (3) every tetrapod has a larynx that quickly closes to function in protection of the lungs, as well as it often might function in phonation, as is the case in humans and microbats. One feature of the mammal vocalization system that results in variation of sound production, especially for microbats and megabats, is the length of vocal folds. The vocal folds determine the lowest frequency at which the folds can vibrate. Compared to humans, the length of vocal folds in microbats are very small. This allows them to generate their characteristic ultrasonic sound that are above the human hearing range. In contrast, vocal folds of larger mammals, such as whales are greatly hypertrophied, which results in the production of infrasonic sounds far below the human hearing range.[10]

Some moths have developed a protection against bats. They are able to hear bats' ultrasounds and flee as soon as they notice these sounds, or stop beating their wings for some time to deprive the bats of the characteristic echo signature of moving wings on which they may home in. To counteract this, the bats may cease producing the ultrasound bursts as they near prey, and thus avoid detection.

Classification

The bats are (from top to bottom and left to right): the greater mouse-eared bat, the lesser horseshoe bat, the brown long-eared bat, the common pipistrelle, the greater noctule bat, and the barbastelle, Romanian post miniature sheet, 2003

While bats have been traditionally divided into megabats and microbats, recent molecular evidence has shown the superfamily Rhinolophoidea to be more genetically related to megabats than to microbats, indicating the microbats are paraphyletic. To resolve the paraphyly of microbats, the Chiroptera were redivided into suborders Yangochiroptera (which includes Nycteridae, vespertilionoids, noctilionoids, and emballonuroids) and Yinpterochiroptera, which includes megabats, rhinopomatids, Rhinolophidae, and Megadermatidae.[11]

This is the classification according to Simmons and Geisler (1998):

Superfamily Emballonuroidea

Superfamily Rhinopomatoidea

Superfamily Rhinolophoidea

Superfamily Vespertilionoidea

Superfamily Molossoidea

Superfamily Nataloidea

Superfamily Noctilionoidea

References

  1. ^ Whitaker, J.O. Jr, Dannelly, H.K. & Prentice, D.A. (2004) Chitinase in insectivorous bats. Journal of. Mammalogy, 85, 15–18.
  2. ^ Walker's Bats of the World, Ronald M. Nowak (1994)
  3. ^ A Natural History of the Sonoran Desert, Edited by Steven Phillips and Patricia Comus, University of California Press, Berkeley p. 464
  4. ^ a b c d Davies, Kalina TJ; Maryanto, Ibnu; Rossiter, Stephen J. (2013-01-01). "Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear". Frontiers in Zoology. 10: 2. doi:10.1186/1742-9994-10-2. ISSN 1742-9994. PMC 3598973. PMID 23360746.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ a b Reichard, Jonathan D.; Fellows, Spenser R.; Frank, Alexander J.; Kunz, Thomas H. (2010-11-01). "Thermoregulation during Flight: Body Temperature and Sensible Heat Transfer in Free-Ranging Brazilian Free-Tailed Bats (Tadarida brasiliensis)". Physiological and Biochemical Zoology. 83 (6): 885–897. doi:10.1086/657253. ISSN 1522-2152.
  6. ^ a b Berke, Gerald S.; Long, Jennifer L. (2010-01-01). Brudzynski, Stefan M. (ed.). Handbook of Behavioral Neuroscience. Handbook of Mammalian VocalizationAn Integrative Neuroscience Approach. Vol. 19. Elsevier. pp. 419–426.
  7. ^ Hedenström, Anders; Johansson, L. Christoffer (2015-03-01). "Bat flight: aerodynamics, kinematics and flight morphology". Journal of Experimental Biology. 218 (5): 653–663. doi:10.1242/jeb.031203. ISSN 0022-0949. PMID 25740899.
  8. ^ Holbrook, K A; Odland, G F (1978-05-01). "A collagen and elastic network in the wing of the bat". Journal of Anatomy. 126 (Pt 1): 21–36. ISSN 0021-8782. PMC 1235709. PMID 649500.
  9. ^ Simmons, Nancy B.; Seymour, Kevin L.; Habersetzer, Jörg; Gunnell, Gregg F. (2010-08-19). "Inferring echolocation in ancient bats". Nature. 466 (7309): E8–E8. doi:10.1038/nature09219. ISSN 0028-0836.
  10. ^ "Download Limit Exceeded". citeseerx.ist.psu.edu. Retrieved 2017-05-05.
  11. ^ Teeling, E. C.; Madsen, O.; Van de Bussche, R. A.; de Jong, W. W.; Stanhope, M. J.; Springer, M. S. (2002). "Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats". Proceedings of the National Academy of Sciences of the United States of America. 99 (3): 1431–1436. doi:10.1073/Pnas.022477199. PMC 122208. PMID 11805285.

External links