Jump to content

ortho-Vanillin

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 216.188.247.246 (talk) at 17:18, 29 April 2017 (O-vanillin does have a vanilla smell to it, removed statement that it doesn't). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

ortho-Vanillin
Names
IUPAC name
2-Hydroxy-3-methoxybenzaldehyde
Other names
o-Vanillin
3-Methoxysalicylaldehyde
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.197 Edit this at Wikidata
UNII
  • InChI=1S/C8H8O3/c1-11-7-4-2-3-6(5-9)8(7)10/h2-5,10H,1H3 checkY
    Key: JJVNINGBHGBWJH-UHFFFAOYSA-N checkY
  • Oc1c(cccc1OC)C=O
Properties
C8H8O3
Molar mass 152.15 g/mol
Appearance Yellow, fibrous solid
Density 1.231 g/mL
Melting point 40 to 42 °C (104 to 108 °F; 313 to 315 K)
Boiling point 265 to 266 °C (509 to 511 °F; 538 to 539 K)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
May cause irritation to skin,
eyes, and respiratory tract
Flash point > 110 °C (230 °F; 383 K)
Safety data sheet (SDS) External MSDS
Related compounds
Related compounds
Eugenol, Anisaldehyde, Phenol, Vanillin
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

ortho-Vanillin (2-Hydroxy-3-methoxybenzaldehyde) is an organic solid present in the extracts and essential oils of many plants.[1][2][3] Its functional groups include aldehyde, ether and phenol. ortho-Vanillin, a compound of the formula C8H8O3, is distinctly different from its more prevalent isomer, vanillin. The "ortho-" prefix refers to the position of the compound’s hydroxyl moiety, which is found in the para-position in vanillin.

ortho-Vanillin is a fibrous, light-yellow, crystalline solid. Present in a variety of food products, it is not specifically sought after, and is therefore a less-commonly produced and encountered food additive.

History

ortho-Vanillin was first isolated, in 1876, by renowned German chemist Ferdinand Tiemann.[4] By 1910, methods for its purification had been developed by Francis Noelting, who similarly demonstrated its versatility as a general synthetic precursor for a diverse array of compounds, such as the coumarins.[5]

By 1920, the compound began to show use as a dye for hides.[6]

Biological properties

ortho-Vanillin is harmful if ingested, irritating to eyes, skin and respiratory system, but has an unmistakable high LD50 of 1330 mg/kg in mice.[7]

It is a weak inhibitor of tyrosinase,[8] and displays both antimutagenic and comutagenic properties in Escherichia coli.[9] However, its net effect makes it a “potent comutagen.”[10]

ortho-Vanillin possesses moderate antifungal and antibacterial properties.[11]

Uses

Today, most ortho-vanillin is used in the study of mutagenesis and as a synthetic precursor for pharmaceuticals, for example, benafentrine[12] and an antiandrogen compound called Pentomone.

See also

Notes

  1. ^ Abou Zeid, A. H.; Sleem, A. A. (2002). "Natural and stress constituents from Spinacia oleracea L. leaves and their biological activities". Bulletin of the Faculty of Pharmacy (Cairo University). 40 (2): 153–167.
  2. ^ Barbe, Jean-Christophe; Bertrand, Alain. (1996). "Quantitative analysis of volatile compounds stemming from oak wood. Application to the aging of wines in barrels". Journal des Sciences et Techniques de la Tonnellerie. 2: 77–88.
  3. ^ Brunke, E. J.; Hammerschmidt, F. J.; Schmaus, G. (1992). "Das etherische Öl von Santolina chamaecyparissus L. (Santolina chamaecyparissus essential oil)". Parfümerie und Kosmetik. 73 (9): 617–618, 623–624, 626, 628–630, 632, 634–637.
  4. ^ Tiemann, Ferdinand (1876). "Ueber die der Coniferyl- und Vanillinreihe angehörigen Verbindungen (Coniferyl- and vanillin series-related compounds)". Berichte der Deutschen Chemischen Gesellschaft. 9: 409–423. doi:10.1002/cber.187600901133.
  5. ^ Noelting, Francis A. M. o-Hydroxy-m-methoxybenzaldehyde (Orthovanillin). Annales de Chimie et de Physique (1910), 19, 476–550.
  6. ^ Gerngross, Otto. Dyeing hide with o-vanillin and o-protocatechualdehyde and the aldehyde tanning. Angewandte Chemie (1920), 33 (44), 136–138.
  7. ^ http://msds.chem.ox.ac.uk/VA/o-vanillin.html
  8. ^ Kubo, Isao; Kinst-Hori, Ikuyo. Tyrosinase inhibitory activity of the olive oil flavor compounds. Journal of Agricultural and Food Chemistry (1999), 47 (11), 4574–4578.
  9. ^ Watanabe, Kazuko; Ohta, Toshihiro; Shirasu, Yasuhiko. Enhancement and inhibition of mutation by o-vanillin in Escherichia coli. Mutation Research, DNA Repair (1989), 218 (2), 105–109.
  10. ^ Takahashi, Kazuhiko; Sekiguchi, Mutsuo; Kawazoe, Yutaka. A specific inhibition of induction of adaptive response by o-vanillin, a potent comutagen. Biochemical and Biophysical Research Communications (1989), 162 (3), 1376–1381.
  11. ^ Leifertova, I.; Hejtmankova, N.; Hlava, H.; Kudrnacova, J.; Santavy, F. Antifungal and antibacterial effects of phenolic substances. A study of the relation between the biological activity and the constitution of the investigated compounds. Acta Universitatis Palackianae Olomucensis, Facultatis Medicae (1975), 74, 83–101.
  12. ^ Press, Jeffery B.; Bandurco, Victor T.; Wong, Elizabeth M.; Hajos, Zoltan G.; Kanojia, Ramesh M.; Mallory, Robert A.; Deegan, Edward G.; Mcnally, James J.; Roberts, Jerry R.; Cotter, Mary Lou; Graden, David W.; Lloyd, John R. (1986). "Synthesis of 5,6-dimethoxyquinazolin-2(1H)-ones". Journal of Heterocyclic Chemistry. 23 (6): 1821–1828. doi:10.1002/jhet.5570230643. ISSN 0022-152X.