RIG-I

From Wikipedia, the free encyclopedia
Jump to: navigation, search
DDX58
Protein DDX58 PDB 2QFB.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DDX58, DEAD (Asp-Glu-Ala-Asp) box polypeptide 58, RIGI, RLR-1, SGMRT2, RIG-I, DEXD/H-box helicase 58
External IDs MGI: 2442858 HomoloGene: 32215 GeneCards: DDX58
RNA expression pattern
PBB GE DDX58 218943 s at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014314

NM_172689

RefSeq (protein)

NP_055129

NP_766277

Location (UCSC) Chr 9: 32.46 – 32.53 Mb Chr 4: 40.2 – 40.24 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

RIG-I (retinoic acid-inducible gene I) is a RIG-I-like receptor dsRNA helicase enzyme that is encoded (in humans) by the DDX58 gene. RIG-I is part of the RIG-I-like receptor family, which also includes MDA5 and LGP2, and functions as a pattern recognition receptor that is a sensor for viruses such as influenza A, Sendai virus, and flavivirus. Certain retroviruses, such as HIV-1, encode a protease that directs RIG-I to the lysosome for degradation, and thereby evade RIG-I mediated signaling.[3] RIG-I typically recognizes short (< 4000nt) 5′ triphosphate uncapped double stranded or single stranded RNA.[4][5][6] RIG-I and MDA5 are involved in activating MAVS and triggering an antiviral response.[7] RIG-I is also able to detect non-self 5′-triphosphorylated dsRNA transcribed from AT-rich dsDNA by DNA-dependent RNA polymerase III (Pol III). For many viruses, effective RIG-I-mediated antiviral responses are dependent on functionally active LGP2.[8]

Function[edit]

DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases which are implicated in a number of cellular processes involving RNA binding and alteration of RNA secondary structure. RIG-I contains a RNA helicase-DEAD box motifs and a caspase recruitment domain (CARD). RIG-I is involved in viral double-stranded (ds) RNA recognition and the regulation of immune response.[9]

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, Zhao T, Laughrea M, Wainberg MA, Hiscott J (Feb 2011). "RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I". Journal of Virology. 85 (3): 1224–36. PMC 3020501Freely accessible. PMID 21084468. doi:10.1128/JVI.01635-10. 
  4. ^ Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C (Nov 2006). "RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates". Science. 314 (5801): 997–1001. PMID 17038589. doi:10.1126/science.1132998. 
  5. ^ Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (Jul 2004). "The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses". Nature Immunology. 5 (7): 730–7. PMID 15208624. doi:10.1038/ni1087. 
  6. ^ Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S (Jul 2008). "Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5". The Journal of Experimental Medicine. 205 (7): 1601–10. PMC 2442638Freely accessible. PMID 18591409. doi:10.1084/jem.20080091. 
  7. ^ Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (Aug 2011). "MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response". Cell. 146 (3): 448–61. PMC 3179916Freely accessible. PMID 21782231. doi:10.1016/j.cell.2011.06.041. 
  8. ^ Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujita T, Akira S, Takeuchi O (Jan 2010). "LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses". Proceedings of the National Academy of Sciences of the United States of America. 107 (4): 1512–7. PMC 2824407Freely accessible. PMID 20080593. doi:10.1073/pnas.0912986107. 
  9. ^ "Entrez Gene: DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58". 

Further reading[edit]