Reproductive technology

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Reproductive Technology encompasses all current and anticipated uses of technology in human and animal reproduction, including assisted reproductive technology, contraception and others. It is also termed Assisted Reproductive Technology, where it entails an array of appliances and procedures that enable the realization of safe, improved and healthier reproduction. While this is not true of all men and women, for an array of married couples, the ability to have children is vital. But through the technology, infertile couples have been provided with options that would allow them to conceive children.[1]


Assisted reproductive technology[edit]

Assisted reproductive technology (ART) is the use of reproductive technology to treat low fertility or infertility. The natural method of reproduction has become only one of many new techniques used today. There are millions of couples that do not have the ability to reproduce on their own because of infertility and therefore, must resort to these new techniques. The main causes of infertility are that of hormonal malfunctions and anatomical abnormalities.[2] ART is currently the only form of l uterus, for example, for the time being can only conceive through surrogacy methods).[3] Examples of ART include in vitro fertilization and its possible expansions, including:


Reproductive technology can inform family planning by providing individual prognoses regarding the likelihood of pregnancy. It facilitates the monitoring of ovarian reserve, follicular dynamics and associated biomarkers in females,[4] and semen analysis in males.[5]


Contraception is a form of reproductive technology that enables people to control their fertility.[6] This is inhady with reproduction, which is the ability of a species to perpetuate and in the human species it is looked upon as a right in today's society. Males and females alike feel pressure that in order to be fully male or fully female they must procreate.


The following reproductive techniques are not currently in routine clinical use; most are still undergoing development:

Same-sex procreation[edit]

Research is currently investigating the possibility of same-sex procreation, which would produce offspring with equal genetic contributions from either two females or two males.[7] This form of reproduction has become a possibility through the creation of either female sperm (containing the genetic material of a female) or male eggs (containing the genetic material of a male). Same-sex procreation would remove the need for lesbian and gay couples to rely on a third party donation of a sperm or an egg for reproduction.[8] The first significant development occurred in 1991, in a patent application filed by U.Penn. scientists to fix male sperm by extracting some sperm, correcting a genetic defect in vitro, and injecting the sperm back into the male's testicles.[9] While the vast majority of the patent application dealt with male sperm, one line suggested that the procedure would work with XX cells, i.e., cells from an adult woman to make female sperm.

In the two decades that followed, the idea of female sperm became more of a reality. In 1997, scientists partially confirmed such techniques by creating chicken female sperm in a similar manner.[10] They did so by injecting blood stem cells from an adult female chicken into a male chicken's testicles. In 2004, other Japanese scientists created two female offspring by combining the eggs of two adult mice.[11][12]

In 2008, research was done specifically for methods on creating human female sperm using artificial or natural Y chromosomes and testicular transplantation.[13] A UK-based group predicted they would be able to create human female sperm within five years. So far no conclusive successes have been achieved.[2]

In 2018 Chinese research scientists produced 29 viable mice offspring from two mother mice by creating sperm-like structures from haploid Embryonic stem cells using gene editing to alter imprinted regions of DNA. They were unable to get viable offspring from two fathers. Experts noted that there was little chance of these techniques being applied to humans in the near future.[14][15]


These reproductive technologies have come a long way in the last twenty years, and will continue making expansive strides and advancements. However, the main question asked from the view of the ethical lens "Where do babies come from?" This is becoming even harder and harder to answer. Often than not, the response that is used sounds something like, if a man and a woman love each other and desire to conceive, and maybe they cannot.[16] Their desire does not have to stop there. Hence, there is now the use of Vitro fertilization, fertility drugs, and sperm/egg donors as well as future advances kick in and answer this takes on the new twist as the couple is capacitated in looking through the catalog to pick what kind of baby they desire.[9][17]

This new technological advance has a lot of ethical dilemmas that surround it as it will lead to more exorbitant charges, which will cause a reduction in the amount as well as the types of individuals who may afford the new procedures.[7] There is a concern about if the future generations of natural births will lorded over by a genetically enhanced master class Many issues of reproductive technology have given rise to bioethical issues, since technology often alters the assumptions that lie behind existing systems of sexual and reproductive morality. Other ethical considerations arise with the application of ART to women of advanced maternal age, who have higher changes of medical complications (including pre-eclampsia), and possibly in the future its application to post-menopausal women.[18][19][20] Also, ethical issues of human enhancement arise when reproductive technology has evolved to be a potential technology for not only reproductively inhibited people but even for otherwise re-productively healthy people.

[21] These advances may actually hinder the human race. With the conclusion of the Human Genome Project, which is rapidly imminent, the scenario is becoming even more far fetched.

See individual subarticles for details.

In fiction[edit]


  1. ^ Al-Inany HG, Youssef MA, Ayeleke RO, Brown J, Lam WS, Broekmans FJ (April 2016). "Gonadotrophin-releasing hormone antagonists for assisted reproductive technology" (PDF). The Cochrane Database of Systematic Reviews. 4: CD001750. doi:10.1002/14651858.CD001750.pub4. PMID 27126581.
  2. ^ a b MacRae F (February 2008). "Scientists turn bone marrow into sperm". Australia: The Courier and Mail.
  3. ^ Campo H, Cervelló I, Simón C (July 2017). "Bioengineering the Uterus: An Overview of Recent Advances and Future Perspectives in Reproductive Medicine". Annals of Biomedical Engineering. 45 (7): 1710–1717. doi:10.1007/s10439-016-1783-3. PMID 28028711. S2CID 4130310.
  4. ^ Nelson SM, Telfer EE, Anderson RA (2012). "The ageing ovary and uterus: new biological insights". Human Reproduction Update. 19 (1): 67–83. doi:10.1093/humupd/dms043. PMC 3508627. PMID 23103636.
  5. ^ Narvaez JL, Chang J, Boulet SL, Davies MJ, Kissin DM (August 2019). "Trends and correlates of the sex distribution among U.S. assisted reproductive technology births". Fertility and Sterility. 112 (2): 305–314. doi:10.1016/j.fertnstert.2019.03.034. PMID 31088685.
  6. ^ Sunderam S, Kissin DM, Crawford SB, Folger SG, Boulet SL, Warner L, Barfield WD (February 2018). "Assisted Reproductive Technology Surveillance - United States, 2015". MMWR. Surveillance Summaries. 67 (3): 1–28. doi:10.15585/mmwr.ss6703a1. PMC 5829941. PMID 29447147.
  7. ^ a b Kissin DM, Adamson GD, Chambers G, DeGeyter C (4 July 2019). Assisted Reproductive Technology Surveillance. Cambridge University Press. ISBN 978-1-108-49858-6.
  8. ^ Gerkowicz SA, Crawford SB, Hipp HS, Boulet SL, Kissin DM, Kawwass JF (April 2018). "Assisted reproductive technology with donor sperm: national trends and perinatal outcomes". American Journal of Obstetrics and Gynecology. 218 (4): 421.e1–421.e10. doi:10.1016/j.ajog.2017.12.224. PMID 29291411. S2CID 27903207.
  9. ^ a b US 5858354  Repopulation of testicular Seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny
  10. ^ Tagami T, Matsubara Y, Hanada H, Naito M (June 1997). "Differentiation of female chicken primordial germ cells into spermatozoa in male gonads". Development, Growth & Differentiation. 39 (3): 267–71. doi:10.1046/j.1440-169X.1997.t01-2-00002.x. PMID 9227893. S2CID 35900043.
  11. ^ Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, et al. (April 2004). "Birth of parthenogenetic mice that can develop to adulthood". Nature. 428 (6985): 860–4. Bibcode:2004Natur.428..860K. doi:10.1038/nature02402. PMID 15103378. S2CID 4353479.
  12. ^ Silva SG, Bertoldi AD, Silveira MF, Domingues MR, Evenson KR, Santos IS (January 2019). "Assisted reproductive technology: prevalence and associated factors in Southern Brazil". Revista de Saúde Pública. 53: 13. doi:10.11606/s1518-8787.2019053000737. PMC 6390642. PMID 30726494.
  13. ^ "Color illustration of female sperm making process" (PDF). Human Samesex Reproduction Project.[permanent dead link]
  14. ^ McRae M (11 October 2018). "Chinese Researchers Have Spawned Healthy Mice With 2 Biological Mothers And No Father". Science Alert. Retrieved 12 October 2018.
  15. ^ Li ZK, Wang LY, Wang LB, Feng GH, Yuan XW, Liu C, et al. (November 2018). "Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions". Cell Stem Cell. 23 (5): 665–676.e4. doi:10.1016/j.stem.2018.09.004. PMID 30318303.
  16. ^ Sunderam S, Kissin DM, Crawford SB, Folger SG, Boulet SL, Warner L, Barfield WD (February 2018). "Assisted Reproductive Technology Surveillance - United States, 2015". MMWR. Surveillance Summaries. 67 (3): 1–28. doi:10.15585/mmwr.ss6703a1. PMC 5829941. PMID 29447147.
  17. ^ Rockhill K, Tong VT, Boulet SL, Zhang Y, Jamieson DJ, Kissin DM (March 2019). "Smoking and Clinical Outcomes of Assisted Reproductive Technologies". Journal of Women's Health. 28 (3): 314–322. doi:10.1089/jwh.2018.7293. PMC 6420368. PMID 30615563.
  18. ^ Harrison BJ, Hilton TN, Rivière RN, Ferraro ZM, Deonandan R, Walker MC (16 August 2017). "Advanced maternal age: ethical and medical considerations for assisted reproductive technology". International Journal of Women's Health. 9: 561–570. doi:10.2147/IJWH.S139578. PMC 5566409. PMID 28860865.
  19. ^ Lung FW, Chiang TL, Lin SJ, Lee MC, Shu BC (April 2018). "Assisted reproductive technology has no association with autism spectrum disorders: The Taiwan Birth Cohort Study". Autism. 22 (3): 377–384. doi:10.1177/1362361317690492. PMID 29153004. S2CID 4921280.
  20. ^ Adashi EY, Rock JA, Rosenwaks Z (1996). Reproductive endocrinology, surgery, and technology. Philadelphia: Lippincott-Raven. pp. 1394–1410.
  21. ^ Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L, et al. (April 2019). "Assisted Reproductive Technology Surveillance - United States, 2016". MMWR. Surveillance Summaries. 68 (4): 1–23. doi:10.15585/mmwr.ss6804a1. PMC 6493873. PMID 31022165.
  22. ^ Mastony C (21 June 2009). "Heartache of infertility shared on stage, screen". Chicago Tribune.