Silicon tetrachloride

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Smokefoot (talk | contribs) at 16:37, 20 February 2011 (expand basics). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Silicon tetrachloride
Names
IUPAC name
Silicon (IV) chloride
Other names
Silicon tetrachloride
Tetrachlorosilane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.037 Edit this at Wikidata
EC Number
  • 233-054-0
RTECS number
  • VW0525000
UN number 1818
  • InChI=1S/Cl4Si/c1-5(2,3)4 checkY
    Key: FDNAPBUWERUEDA-UHFFFAOYSA-N checkY
  • InChI=1/Cl4Si/c1-5(2,3)4
  • [Si](Cl)(Cl)(Cl)Cl
Properties
SiCl4
Molar mass 169.90 g/mol
Appearance Colourless liquid
Density 1.483 g/cm3
Melting point −68.74 °C
Boiling point 57.65 °C
decomposes
Solubility soluble in benzene, toluene, chloroform, ether
Vapor pressure 25.9 kPa at 20 °C
Structure
Tetrahedral
4
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
0
2
Related compounds
Other anions
Silicon tetrafluoride
Silicon tetrabromide
Silicon tetraiodide
Other cations
Carbon tetrachloride
Germanium tetrachloride
Tin(IV) chloride
Titanium tetrachloride
Supplementary data page
Silicon tetrachloride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Silicon tetrachloride is the inorganic compound with the formula SiCl4. It is a colourless volatile liquid that fumes in air. It is used to produce high purity silicon and silica for commercial applications.

Preparation

Silicon tetrachloride is prepared by the chlorination of various silicon compounds such as ferrosilicon, silicon carbide, or mixtures of silicon dioxide and carbon. The ferrosilicon route is most common.[1]

In the laboratory, SiCl4 can prepared by treating silicon with chlorine:

Si + 2 Cl2 → SiCl4

It was first prepared by Jöns Jakob Berzelius in 1823.

Reactions

Hydrolysis and related reactions

Like other chlorosilanes, silicon tetrachloride reacts readily with water:

SiCl4 + 2 H2O → SiO2 + 4 HCl

In contrast, carbon tetrachloride does not hydrolyze readily. The differing rates of hydrolysis are attributed to the greater atomic radius of the silicon atom, which allows attack at silicon. The reaction can be noticed on exposure of the liquid to air, the vapour produces fumes as it reacts with moisture to give a cloud-like aerosol of hydrochloric acid.[2] With methanol and ethanol it reacts to give tetramethyl orthosilicate and tetraethyl orthosilicate:

SiCl4 + 4 ROH → Si(OR)4 + 4 HCl

Polysilicon chlorides

At higher temperatures homologues of silicon tetrachloride can be prepared by the reaction:

Si + SiCl4 → Si2Cl6

In fact, the chlorination of silicon is accompanied by the formation of Si2Cl6. A series of compounds containing up to six silicon atoms in the chain can be separated from the mixture using fractional distillation.

Reactions with other nucleophiles

Silicon tetrachloride is a classic electrophile in its reactivity.[3] It forms a variety of organosilicon compounds upon treatment with Grignard reagents and organolithium compounds:

4 RLi + SiCl4 → R4Si + 4 LiCl

Reduction with hydride reagents afford silane.

Uses

Silicon tetrachloride is used as an intermediate in the manufacture of high purity silicon,[1] since it has a boiling point convenient for purification by repeated fractional distillation. It can be reduced to silicon by hydrogen gas. Very pure silicon derived from silicon tetrachloride is used in large amounts in the semiconductor industry, and also in the production of photovoltaic cells. It can also be hydrolysed to high purity fused silica. High purity silicon tetrachloride is used in the manufacture of optical fibres. This grade should be free of hydrogen containing impurities like trichlorosilane. Optical fibres are made using processes like MCVD and OFD where silicon tetrachloride is oxidized to pure silica in the presence of oxygen.

Safety and environmental issues

Pollution from the production of silicon tetrachloride has been reported in China associated with the increased demand for photovoltaic cells that has been stimulated by subsidy programs.[4]

See also

References

  1. ^ a b Walter Simmler "Silicon Compounds, Inorganic" in Ullmann's Encyclopedia of Industrial Chemistry 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a24_001
  2. ^ Template:Clugston&Flemming
  3. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  4. ^ http://www.washingtonpost.com/wp-dyn/content/article/2008/03/08/AR2008030802595.html