Jump to content

Strontium carbonate

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CheMoBot (talk | contribs) at 16:22, 12 October 2011 (Updating {{chembox}} (no changed fields - added verified revid - updated 'DrugBank_Ref', 'ChEMBL_Ref', 'ChEBI_Ref', 'KEGG_Ref', 'ChEBI_Ref') per Chem/Drugbox validation (report errors or [[...). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Strontium carbonate
Names
IUPAC name
Strontium carbonate
Other names
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.015.131 Edit this at Wikidata
RTECS number
  • WK8305000
UNII
  • InChI=1S/CH2O3.Sr/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2 checkY
    Key: LEDMRZGFZIAGGB-UHFFFAOYSA-L checkY
  • InChI=1/CH2O3.Sr/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2
    Key: LEDMRZGFZIAGGB-NUQVWONBAS
  • [Sr+2].[O-]C([O-])=O
Properties
SrCO3
Molar mass 147.63 g/mol
Appearance White or grey powder
hygroscopic
Odor Odorless
Density 3.5 g/cm3
Melting point 1290 ºC decomp.
0.0011 g/100 ml (18 ºC)
1.518 [1]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Flash point Non-flammable
Related compounds
Other cations
Magnesium carbonate
Calcium carbonate
Barium carbonate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Strontium carbonate (SrCO3) is the carbonate salt of strontium that has the appearance of a white or grey powder. It occurs in nature as the mineral strontianite.

Chemical properties

Strontium carbonate is a white, odorless, tasteless powder. Being a carbonate, it is a weak base and therefore is reactive with acids. It is otherwise stable and safe to work with. It is practically insoluble in water (1 part in 100,000). The solubility is increased significantly if the water is saturated with carbon dioxide, to 1 part in 1,000. It is soluble in dilute acids.

Preparation

Other than the natural occurrence as a mineral, strontium carbonate is prepared synthetically in one of two manners. First of which is from naturally occurring celestine also known as strontium sulfate (SrSO4) or by using soluble strontium salts by the reaction in solution with a soluble carbonate salt (usually sodium or ammonium carbonates). For example if sodium carbonate was used in solution with strontium nitrate:

Sr(NO3)2 (aq) + Na2CO3 (aq) → SrCO3 (s) + 2 NaNO3 (aq).

Uses

Nitric acid reacts with strontium carbonate to form strontium nitrate.

The most common use is as an inexpensive colorant in fireworks. Strontium and its salts emit a brilliant red color in flame. Unlike other strontium salts, the carbonate salt is generally preferred because of its cost and the fact that it is not hygroscopic. Its ability to neutralize acid is also very helpful in pyrotechnics. Another similar application is in road flares.

Strontium carbonate is used for electronic applications. It is used for manufacturing CTV to absorb electrons resulting from the cathode.

It is used in the preparation of iridescent glass, luminous paints, strontium oxide or strontium salts and in refining sugar.

It is widely used in the ceramics industry as an ingredient in glazes. It acts as a flux and also modifies the color of certain metallic oxides. It has some properties similar to barium carbonate.

It is also used in the manufacturing of strontium ferrites for permanent magnets which are used in loud speakers and door magnets.

Because of its status as a weak Lewis base, strontium carbonate can be used to produce many different strontium compounds by simple use of the corresponding acid.

References

  1. ^ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0070494398