Talk:Convection zone

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Physics / Fluid Dynamics  (Rated Start-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Start-Class article Start  This article has been rated as Start-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
This article is supported by Fluid Dynamics Taskforce.
 
WikiProject Astronomy (Rated Start-class, Mid-importance)
WikiProject icon Convection zone is within the scope of WikiProject Astronomy, which collaborates on articles related to Astronomy on Wikipedia.
Start-Class article Start  This article has been rated as Start-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
 

Convection zones comprise hot, light, upwelling fluid; and cold, dense, downwelling fluid. Ergo, convection zones are characterized by two types of fluids, having (two) separate temperatures, at every altitude / depth. Convection zones must be mathematically modeled accordingly. The following figure sketches a star's temperature profile (T vs. r), qualitatively indicating a convection zone, with steep (supra-adiabatic) overall average temperature gradient, spanning the distance between an interior, and another exterior, region wherein the temperature profile is shallow (sub-adiabatic), and so stable against convection. Upon reaching the convection zone, fluid rises along the "hot" adiabat to the top of the zone, whereat it cools, and then sinks along the "cold" adiabat to the bottom of the zone, whereat it (re-)heats, etc. Convection zones form natural heat engines. Their two-fluid character defines their properties; they must be mathematically modeled commensurately. Temperature-dependent density contrast (δρ) determines the relative buoyancy force, counteracted by viscosity between the cells, which depends upon velocity contrast (δv) and characteristic cell size; mass continuity (δ(ρv)=0) helps solve the system for the unknown variables.

http://s10.postimage.org/knnobt4nd/Convection.png

66.235.38.214 (talk) 14:19, 20 October 2012 (UTC)

A Wikipedia talk page is not the place to publish original research or synthesis. If this model has been published in a reliable peer-reviewed journal, then it can be added to the article with the appropriate cite, assuming of course that it is not given undue weight. --Yaush (talk) 14:48, 22 October 2012 (UTC)

University of South Wales link unreliable?[edit]

I hate to call a university link unreliable. But the first link gives a discussion of convection that is flat out wrong. What is being described is conduction, not convection.

Remove the link? --Yaush (talk) 23:50, 24 September 2013 (UTC)