Talk:Crucible steel

From Wikipedia, the free encyclopedia
Jump to: navigation, search


Under the heading 'ancient history of south asian production' reads: "In addition India's superior iron ore has trace vanadium and other rare earths which unintentionally leads to the formation of carbon nano tubes in Indian crucible steel which was famous throughout the middle east for its ability to retain its edge even after prolonged usage."

This could use a reference, while vanadium improves hardenability I wouldn't suspect carbon nanotubes are in any way involved. This probably has more to do with the energy requirements for a martensitic phase transformation. — Preceding unsigned comment added by (talk) 03:25, 8 May 2015 (UTC)

What does this mean?[edit]

THe end of the third paragraph reads: "Modern methods instead remove carbon from the pig iron, due to its low cost." Someone please clarify, if able. Sfahey 14:49, 20 February 2006 (UTC)

To make crucible steel, pig iron is wrought to de-carburize it. This wrought iron is then cementized by heating it with additional carbon. Modern steelmaking skips a step; not having to work the pig iron reduces costs.-- (talk) 00:19, 8 July 2009 (UTC)

Suggest merge of blister steel into Crucible steel[edit]

Suggest merge of blister steel into Crucible steel. The Crucible Steel article covers the subject better already. --John Nagle 16:38, 8 April 2006 (UTC)

If blister steel is to be merged, it should be with cementation process. I wrote the present article as a means of redirecting people to that article or to crucible steel - something just a little fuller than a plain redirect. If duplication is to be eliminated, it should be by removing the blister steel section from Crucible Steel, and replacing it with a brief statemetn referring to that article. When I started correcting historical articles on iron and steel, I found a good deal of material that was (quite frankly) wrong, and evidently written by people who had found something in a derivative work, written by another person who did not understand what he was writing about.
I have noted duplication of material in other parts of Wikipedia. However, it requires an experienced editor to sort out such duplication, and that rules me out. Peterkingiron 21:12, 22 April 2006 (UTC)

I continue to oppose the suggested merge. Blister steel was a distinct product which was made in its own right and continued to be made long alfter Huntsman discovered how to make crucible steel. However perhaps the article should become a redirect to cementation process. Having gained more experience as an editor, I have eliminated some fo the duplication that I complained of above, but there may still be more to be done. Peterkingiron 22:07, 24 February 2007 (UTC)

I note no further commetn has been made. I would not object to this article beign made into a redirect, to cementation process, since mere definitions are frowned upon. Peterkingiron 23:09, 11 April 2007 (UTC)

comment on my editing of the article[edit]

I regret that I have been guilty of reinstating a note on what blister steel is, referring to a new articel on the cementation process. Contrary to what appeared when I stated, the cementation process (making blister steel) was not a derivative one from crucible steel production, but existed in its own right for 130 years before Huntsman's time. Furthermore, from his time, only some of the blister steel was melted in crucibles and cast. I therefore consider that the section on blister steel should NOT appear as part of an article on crucible steel; they are separate (and to some extent independent) processes. Nevertheless, I have left where it is for the moment, but would appreciate the views pf others. The raw material for crucible steel was blister steel. The raw material for blister steel was bar iron, usually Swedish oregrounds iron; this is NOT correctly described as 'ore'. I have not put sources here, as it is not my article, though I have where I have undertaken a substantial edit of that on the cementation process. Peterkingiron 20:25, 8 April 2006 (UTC)

"Sri Lanka exported Damascus steel to the Middle East"[edit]

I have tagged the above statement with "fact", because I think this requires evidence. It may be right, but there was also a noted steel-making centre at Merv in central Asia. Furthermore, it might be better to add detail to more detailed articles on Damascus steel and wootz. Peterkingiron (talk) 19:28, 28 February 2008 (UTC)

Exactly where the steel that the 'swords of Damascus' came from is unknown, but it was probably a crucible steel of some sort. Suitable steel was made in Sri Lanka, India, Merv and other areas nearby at the time. (talk) 21:33, 8 May 2008 (UTC)

Recent expansion[edit]

This article was promarily about the commodity known as crucible steel in recent times. The massive recent expansion. without any discussion has conmpletely altered the balance of the article so that it is largely about medieval Asian production. I am not suggesting that the new material is wrong. What I am questioning is whether this artiucle is really the best place for it. We already have an article on Wootz and another on Damascus steel, I would respectively suggest that this is the proper place for the material, with appropriate links from the presnt article. The alternaive might be to merge those articles, but in that case the section on English crucible steel (from c.1740) would need to be greatly expanded to restore a proper balance. Peterkingiron (talk) 16:47, 25 January 2010 (UTC)

Not in agreement with other sources[edit]

This article contains statements not supported by Encyclopedia of the History of Technology and economic history. These sources only refer to what is called "English crucible steel" in this article. Also, photos in this article showing grain, unless they are microscopic, resemble a hammered steel (shear steel) and not a fused (melted) steel.Phmoreno (talk) 00:34, 10 November 2012 (UTC)

Update: After re-reading three sources, all are in agreement that crucible steel is made in crucibles and the process was invented by Benjamin Huntsman ca. 1740. Unless there is evidence that any ancient process (the descriptions of which are omitted here) used crucibles to melt steel, this material is not crucible steel. Unless someone can connect these processes to some way of melting steel, this material needs to be deleted.Phmoreno (talk) 03:41, 13 August 2014 (UTC)

This article has been rather messed up by having material on steel in central and south Asia mixed into it. Material by Feuerbach, Freestone, Julieff, and Craddock is accurate, but some of this reflects discoveries made in the last 20 years, which will therefore not appear in older encyclopaedias (or perhaps bad encyclopedias). Like you, I am not happy about having the two subjects mixed up. My reference would be to split the article to separate out the Asian material into a separate (though linked) article. My problem is that I am insufficiently familiar with the detail of this thread of scholarly work to be able to do the split properly. Another problem is the addition of "me too" items - a Russian reinvention of it and a rather different American process of c.1880. Furthermore one of those has been stiffed into the lead, upsetting its structure. I am a historian, rahter than a metallurgist and cannot comment on the photos. However the frequent disputed tags applied to the article are misconcieved. Please specify exactly what encylopedia you are citing, including when it was published. I rather fear that this article is a case of too many cooks spoiling the broth! Peterkingiron (talk) 17:25, 13 August 2014 (UTC)
I am in favor of having a separate article for ancient steel making. The tags are unsightly, but I hope they attract the attention of someone familiar enough with ancient steel making to answer some questions.Phmoreno (talk) 17:58, 13 August 2014 (UTC)

My sources are Landes (1969), McNeil (1990) and Misa (1995), so they won't include recent archaeological findings. The ancient Chinese did have a method of making steel by layering cast iron over stacks of wrought iron bars and applying heat. The cast iron, with its lower melting point, dripped down through the wrought iron, dissolving some of it, resulting in a lower carbon content. This is a completely different process, even if the resulting steel had similar properties. (It was tested in Germany quite a few decades ago.) The product would have been similar to crucible steel, but probably with more impurities, unless the cast iron had been previously refined.Phmoreno (talk) 17:58, 13 August 2014 (UTC)

The section on Uzbekistan mentions slag in crucibles or crucible fragments. But I fail to see how "carburization of iron ore" is connected to steel and not cast iron, which has a lower melting point. The ore could have been converted to steel first, but to then melt the steel to separate the slag would have required a higher temperature, which would have been difficult for ancients. Also, I am still troubled by the grainy appearance of the samples. It doesn't look like it was melted. Hopefully someone with knowledge of metallurgy can comment on this.Phmoreno (talk) 01:53, 22 August 2014 (UTC)
On further reading I did find that ancient Chinese kilns for firing porcelain were able to reach temperatures of 1600 C with proper regulation of draft. (Pure iron melts at 1538 C. Cast iron melts below 1200 C.) I also read separately that developing crucibles to withstand such high temperatures required a lot of research in the West. However, the wood grain appearance of these other steels is not found crucible steel.Phmoreno (talk) 17:57, 14 March 2015 (UTC)
I was finally able to find that there were similarities between some forms of wootz steel and crucible steel.[1]


Why do recent additions focus so much on the Bessemer process, which post-dates the advent of crucible steel in the UK by a century? It even goes into detail on basic vs acid Bessemer linings, which has even less relevance to crucible steel.

Last time I looked, Bessemer still hadn't replaced other processes for complex alloy steels, which is where the origins of the crucible process lie. Bessemer and oxygen converters are (AFAIK), still primarily the producers of bulk mild steel, not the high carbon and alloy steels that rely on open hearth and electric arc processes. Andy Dingley (talk) 22:59, 28 March 2013 (UTC)

This issue has been addressed. Please see if it looks satisfactory and supply a reference if you have one.Phmoreno (talk) 01:29, 1 July 2014 (UTC)

Inappropriate ((disputed tag)) tags removed, discussion of ((disputed-section)) tags ("Not in agreement with other sources")[edit]

user:Phmoreno has added several inappropriate {{Disputed tag|talk=Crucible steel#Not in agreement with other sources}} tags, each paired with a (more reasonable) {{disputed-section|date=July 2014}}. I assume Phmoreno intended to provide a description of his concerns, and misused {{Disputed tag}} for that purpose. I have removed those, and added this section to discuss the {{Disputed-section}} for the reason "Not in agreement with other sources". As things stand, that comment seems inadequate to describe the problem. Rwessel (talk) 00:26, 22 August 2014 (UTC)

Those sections are on processes that are called something other than crucible steel, so the question is: what's the relationship? Also, do we even know the processes these steel objects were made with?Phmoreno (talk) 17:44, 14 March 2015 (UTC)

Early modern steel in Europe[edit]

The material below was apparently originally a separate article that was merged here, but it doesn't seem to add much to the subject. It seems more relevant to the article Cementation process. Suggest a merge there or with main Steel article.

--Coconutporkpie (talk) 07:36, 19 November 2014 (UTC)

Really it belongs back under Blister steel, which was merged into oblivion years ago. Cementation isn't really the same thing as blister steel. There are a lot of preceeding small-scale blister processes that aren't cementation on that scale. Japanese tamahagane is an interesting one. Andy Dingley (talk) 11:32, 19 November 2014 (UTC)

As a matter of fact, it seems pretty well covered at ferrous metallurgy already.

--Coconutporkpie (talk) 12:36, 19 November 2014 (UTC)

" a product called cement steel or blister steel.", rather fails to see the distinction between blistering, as a small scale forge process, and as cementation in larger furnaces. Andy Dingley (talk) 13:15, 19 November 2014 (UTC)

Early modern steel in Europe[edit]

Main article: Cementation process
  • Watch video: Blister steel:1
  • Watch video: Shear steel:2

It was possible to produce quality steel in Europe, by importing the highly valued Swedish iron. Although it was not understood at the time, the Swedish ore contained very low levels of common impurities, leading to higher quality irons and steels from otherwise identical techniques applied to other ores. Swedish bar iron was packed into stone boxes in layers with charcoal in between them and heated in a furnace for an entire week. The result was a bar of metal known as blister steel – the surface of the bars became uneven from a multitude of blisters (or blebs) – which varied in quality from one bar to the next and within each bar. A number of blister rods were then wrapped into a larger bundle and re-heated and hammer-forged to mix together and even out the carbon content, resulting in the final product, shear steel.[2] Germany was particularly well invested in this process, largely due to being physically close to Sweden, and became a major steel exporter in the 18th century.[citation needed] The technique was the cementation process.


  1. ^ Tylecote, R. F. (1992). A History of Metallurgy, Second Edition. London: Maney Publishing, for the Institute of Materials. p. 146. ISBN 1-902653-79-3. 
  2. ^ K. C. Barraclough, Steel Before Bessemer (The Metals Society, London 1984).

Superfluous paragraph[edit]

"Crucible steel has aroused considerable interest for well over a thousand years and there is a sizeable body of work concerning its nature and production.[1]"

I've moved this paragraph here from the lead section because it seems unnecessary. This article is about the material itself and its history, not the body of work surrounding it. I don't see anything in the rest of the article that this paragraph serves to summarize, and it doesn't give enough information itself: why has crucible steel "aroused considerable interest"?

--Coconutporkpie (talk) 11:39, 19 November 2014 (UTC)


  1. ^ Craddock 1995,276

"Disputed" mark on every section containing mention of non-western history.[edit]

Can anyone clarify exactly what is being disputed?

-- (talk) 21:48, 12 March 2015 (UTC)

Ask the editor who bulk-added them. It's pointless to add tags like this and not raise the issue through the talk: page. What are they expecting to happen afterwards? Andy Dingley (talk) 21:53, 12 March 2015 (UTC)

Disputed may not be the most appropriate tag. It's not necessarily that the factual accuracy of these sections is disputed, but rather that their link to crucible steel is either not explained or doesn't exist. For comparison these processes need to be specified in detail: raw materials, furnace design, temperature, time, air supply, handling, batch size, etc. Also, these sections put too much emphasis on processes that have different names (Wootz steel, Damascus steel, ets.) than the article title. As previously discussed here, these other steel making techniques need to be in another article.Phmoreno (talk) 11:52, 13 March 2015 (UTC)

I finally located what I feel to be a high quality reference. It is written by someone with a good understanding of metallurgy along with history. It provides the technical details and also shares my doubts about furnace temperatures referred to in this section and one above: [1]

Phmoreno (talk) 03:48, 22 March 2015 (UTC)(talk) 01:56, 18 March 2015 (UTC)

Too much emphasis on other processes[edit]

We have a lot of information about archaeological iron and steel making without much discussion of the processes. This needs to be cut down to what is really on the topic of crucible steel with the process specifics so comparisons can be made. Also, care needs to be taken to not include crucible smelting, which is a separate process.Phmoreno (talk) 03:47, 22 March 2015 (UTC)

  1. ^ Richard Cowen, 'The Age of Iron Chapter 5 in a series of essays on Geology, History, and People prepares for a course of the University of California at Davis. Online version