Task-negative

From Wikipedia, the free encyclopedia
  (Redirected from Task-negative network)
Jump to: navigation, search

In neuroscience, a Task-negative (TN) mode, also known as the default mode network, is inversely correlated to the Task-positive mode.[1] Its main function is to reorient attention towards salient stimuli.[citation needed] TN is considered to be involved mostly, if not entirely, in involuntary actions. The neural network is right hemisphere lateralized and includes the right temporal-parietal junction and the right ventral frontal cortex.[2] This system shows activity increases upon detection of salient targets, especially when they appear in unexpected locations.[3][4][5][6][7] Activity increases also are observed in the ventral system after abrupt changes in sensory stimuli,[8] at the onset and offset of task blocks,[9] and at the end of a completed trial.[10]

Role in disease[edit]

Studies have reported a hyper-connectivity of TN brain regions in depression during rest.[11][12]

See also[edit]

References[edit]

  1. ^ Spreng, R. Nathan. "The Fallacy of a "Task-Negative" Network". Frontiers in Psychology. 3. PMC 3349953Freely accessible. PMID 22593750. doi:10.3389/fpsyg.2012.00145. 
  2. ^ Fox, M.D.; Corbetta, M.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. (2006). "Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems". PNAS. 103: 10046–10051. doi:10.1073/pnas.0604187103. 
  3. ^ Posner, M. I.; Petersen, S. E. (1990). "The Attention System Of The Human Brain". Annual Review of Neuroscience. 13: 25–42. doi:10.1146/annurev.neuro.13.1.25. 
  4. ^ Corbetta, M.; Kincade, J. M.; Ollinger, J. M.; McAvoy, M. P.; Shulman, G. L. (2000). "Voluntary orienting is dissociated from target detection in human posterior parietal cortex". Nature Neuroscience. 3: 292–297. doi:10.1038/73009. 
  5. ^ Astafiev, S. V.; Shulman, G. I.; Stanley, C. M.; Snyder, A. Z.; Van Essen, D. C.; Corbetta, M. (2003). "Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing". Journal of Neuroscience. 23: 4689–4699. PMID 12805308. 
  6. ^ Astafiev, S. V.; Stanley, C. M.; Shulman, G. L.; Corbetta, M. (2004). "Extrastriate body area in human occipital cortex responds to the performance of motor actions". Nature Neuroscience. 7: 542–548. doi:10.1038/nn1241. 
  7. ^ Kincade, J. M.; Abrams, R. A.; Astafiev, S. V.; Shulman, G. I.; Corbetta, M. (2005). "An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention". Journal of Neuroscience. 25: 4593–4604. doi:10.1523/jneurosci.0236-05.2005. 
  8. ^ Downar, J.; Crawley, A. P.; Mikulis, D. J.; Davis, K. D. (2000). "A multimodal cortical network for the detection of changes in the sensory environment". Nature Neuroscience. 3: 277–283. doi:10.1038/72991. 
  9. ^ Fox, M. D.; Snyder, A. Z.; Barch, D. M.; Gusnard, D. A.; Raichle, M. E. (2005). "Transient BOLD responses at block transitions". NeuroImage. 28: 956–966. doi:10.1016/j.neuroimage.2005.06.025. 
  10. ^ Shulman, G. I.; Tansy, A. P.; Kincade, M.; Petersen, S. E.; McAvoy, M. P.; Corbetta, M. (2002). "Reactivation of Networks Involved in Preparatory States". Cerebral Cortex. 12: 590–600. doi:10.1093/cercor/12.6.590. 
  11. ^ Zhou, Yuan; Yu, Chunshui; Zheng, Hua; Liu, Yong; Song, Ming; Qin, Wen; Li, Kuncheng; Jiang, Tianzi (2010). "Increased neural resources recruitment in the intrinsic organization in major depression". Journal of Affective Disorders. 121 (3): 220–230. PMID 19541369. doi:10.1016/j.jad.2009.05.029. 
  12. ^ Berman, M. G.; Peltier, S.; Nee, D. E.; Kross, E.; Deldin, P. J.; Jonides, J. (19 September 2010). "Depression, rumination and the default network". Social Cognitive and Affective Neuroscience. 6 (5): 548–555. PMC 3190207Freely accessible. PMID 20855296. doi:10.1093/scan/nsq080.