Tetrabromoethane

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by DePiep (talk | contribs) at 14:07, 2 November 2015 (Chembox: unknown parameters: fix spelling, replace or remove. See also full parameter list (via AWB script)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tetrabromoethane
Seletal formula of tetrabromoethane
Stereo, skeletal formula of tetrabromoethane with all explicit hydrogens added
Ball and stick model of tetrabromoethane
Ball and stick model of tetrabromoethane
Spacefill model of tetrabromoethane
Spacefill model of tetrabromoethane
Names
IUPAC name
1,1,2,2-Tetrabromoethane[2]
Other names
Identifiers
3D model (JSmol)
Abbreviations TBE[1]
1098321
ChemSpider
ECHA InfoCard 100.001.083 Edit this at Wikidata
EC Number
  • 201-191-5
MeSH 1,1,2,2-tetrabromoethane
RTECS number
  • KI8225000
UN number 2504
  • InChI=1S/C2H2Br4/c3-1(4)2(5)6/h1-2H ☒N
    Key: QXSZNDIIPUOQMB-UHFFFAOYSA-N ☒N
  • BrC(Br)C(Br)Br
Properties
C2H2Br4
Molar mass 345.654 g·mol−1
Appearance Colourless liquid
Density 2.967 g mL−1
Melting point −1.0 °C; 30.3 °F; 272.2 K
Boiling point 243.6 °C; 470.4 °F; 516.7 K
630 mg L−1 (at 20 °C)
Vapor pressure 10 Pa (at 20 °C)
1.637
Thermochemistry
165.7 J K−1 mol−1
Hazards
GHS labelling:
GHS06: Toxic
Danger
H319, H330, H412
P260, P273, P284, P305+P351+P338, P310
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
3
1
1
Flash point 97 °C (207 °F; 370 K)
335 °C (635 °F; 608 K)
Lethal dose or concentration (LD, LC):
  • 1.2 g kg−1 (oral, rat)[3]
  • 5.25 g kg−1 (dermal, rat)
  • 0.4 g/kg (oral, guinea pig)[3]
  • 0.4 g/kg (oral, rabbit)[3]
  • 0.269 g/kg (oral, mouse)[3]
38 ppm (rat, 4 hr)[3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 ppm (14 mg/m3)[1]
REL (Recommended)
None established[1]
IDLH (Immediate danger)
8 ppm[1]
Safety data sheet (SDS) hells-confetti.com
Related compounds
Related alkanes
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Tetrabromoethane (TBE) is a halogenated hydrocarbon, chemical formula C2H2Br4. Although three bromine atoms may bind to one of the carbon atoms creating 1,1,1,2-tetrabromoethane this is not thermodynamically favorable, so in practice tetrabromoethane is equal to 1,1,2,2-tetrabromoethane, where each carbon atom binds two bromine atoms.

It has an unusually high density for an organic compound, near 3 g/mL, due largely to the four bromine atoms.[4] TBE is a liquid at room temperature, and is used to separate mineral ores from its supporting rock by means of preferential flotation. Sand, limestone, dolomite, and other types of rock material will float on TBE, while minerals such as sphalerite, galena and pyrite will sink. A related compound, bromoform, is also sometimes used in these applications, however, TBE is more practical because of its wider liquid range and lower vapor pressure.[4] Acute TBE poisoning has been known to occur.[5]

References

  1. ^ a b c d e f g NIOSH Pocket Guide to Chemical Hazards. "#0009". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ "1,1,2,2-tetrabromoethane - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 26 March 2005. Identifiction. Retrieved 20 June 2012.
  3. ^ a b c d e "Acetylene tetrabromide". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. ^ a b Organic based heavy liquids, heavyliquids.com
  5. ^ A B van Haaften (1969). "Acute tetrabromoethane (acetylene tetrabromide) intoxication in man". American Industrial Hygiene Association. 30 (3): 251–256. doi:10.1080/0002889698506042.