Trinitite

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Trinitite

Trinitite, also known as atomsite or Alamogordo glass,[1][2] is the glassy residue left on the desert floor after the plutonium-based Trinity nuclear bomb test on July 16, 1945, near Alamogordo, New Mexico. The glass is primarily composed of arkosic sand composed of quartz grains and feldspar (both microcline and smaller amount of plagioclase with small amount of calcite, hornblende and augite in a matrix of sandy clay)[3][full citation needed] that was melted by the atomic blast. It was first academically described in American Mineralogist in 1948.[4]

It is usually a light green, although red trinitite was also found in one section of the blast site,[4] and rare pieces of black trinitite also formed.[5] It is mildly radioactive but safe to handle.[6][7][8]

Pieces of the material may still be found at the Trinity site as of 2018,[9] although most of it was bulldozed and buried by the United States Atomic Energy Commission in 1953.[10]

Formation[edit]

Pieces of trinitite

In 2005 it was theorized by Los Alamos National Laboratory scientist Robert Hermes and independent investigator William Strickfaden that much of the mineral was formed by sand which was drawn up inside the fireball itself and then rained down in a liquid form.[11] In a 2010 article in Geology Today, Nelson Eby of University of Massachusetts at Lowell and Robert Hermes described trinitite:

Contained within the glass are melted bits of the first atomic bomb and the support structures and various radionuclides formed during the detonation. The glass itself is marvelously complex at the tens to hundreds of micrometre scale, and besides glasses of varying composition also contains unmelted quartz grains. Air transport of the melted material led to the formation of spheres and dumbbell shaped glass particles. Similar glasses are formed during all ground level nuclear detonations and contain forensic information that can be used to identify the atomic device.[12]

This evidence has been supported by F. Belloni et al. in a 2011 study based on nuclear imaging and spectrometric techniques.[13] Green trinitite is theorised by researchers to contain material from the bomb's support structure, while red trinitite contains material originating from copper electrical wiring.[14]

An estimated 4.3 × 1019 ergs or 4.3 × 1012 joules of heat energy went into forming the glass and as the temperature required to melt the sand into the glass form observed was about 1470 Celsius, this was the estimated minimum temperature the sand was exposed to.[15] Material within the blast fireball was superheated for an estimated 2–3 seconds before resolidification.[16] Relatively volatile elements such as zinc are found in decreasing quantities the closer the trinitite formed to the centre of the blast; the higher the temperature, the more these evaporated and were not captured as the material resolidified.[17]

The detonation left large quantities of trinitite scattered around the crater,[18] with Time writing in September 1945 that the site took the appearance of "[a] lake of green jade," while "[t]he glass takes strange shapes—lopsided marbles, knobbly sheets a quarter-inch thick, broken, thin-walled bubbles, green, wormlike forms."[2] The presence of rounded, beadlike forms suggests some material melted after being thrown into the air before landing already formed rather than remaining at ground level and being melted there.[14] Other trinitite formed on the ground, and contains inclusions of infused sand.[16] This trinitite cooled rapidly on its upper surface, while the lower surface was superheated.[19]

Composition[edit]

A near-hollow sample of trinitite backlit to show light passing through the material
Levels of radioactivity in the trinity glass at the time of explosion from two different samples as measured by gamma spectroscopy on lumps of the glass[20]

The chaotic nature of trinitite's creation has resulted in variations in both structure and precise composition.[16]

The glass has been described as "a layer 1 to 2 centimeters thick, with the upper surface marked by a very thin sprinkling of dust which fell upon it while it was still molten. At the bottom is a thicker film of partially fused material, which grades into the soil from which it was derived. The color of the glass is a pale bottle green, and the material is extremely vesicular with the size of the bubbles ranging to nearly the full thickness of the specimen."[3] The most common form of trinitite is green fragments of 1-3cm thick, smooth on one side and rough on the other; this is the trinitite that cooled after landing still-molten on the desert floor.[21][19]

Around 30% of trinitite is void space, although precise quantities vary greatly between samples. Trinitite also exhibits various other defects such as cracks.[16] In trinitite that cooled after landing, the smooth upper surface contains large numbers of small vesicles while the lower rough layer has lower vesicle density but larger vesicles.[19] It is primarily alkaline.[21]

One of the more unusual isotopes found in trinitite is a barium neutron activation product, the barium in the Trinity device coming from the slow explosive lens employed in the device, known as Baratol.[22] Quartz is the only surviving mineral in most trinitite.[16]

Trinitite no longer contains sufficient radiation to be harmful unless swallowed.[2] It still contains the radionuclides 241Am, 137Cs and 152Eu owing to the Trinity test using a plutonium bomb.[21]

Variations[edit]

There are two forms of trinitite glass with differing refraction indexes. The lower-index glass is composed largely of silicon dioxide, with the higher-index variant having mixed components. Red trinitite exists in both variants, and additionally contains glass rich in copper, iron, and lead as well as metallic globules.[4] Black trinitite's colour is as a result of being rich in iron.[5]

In a study published in 2021 a sample of red trinitite was found to contain a previously undiscovered complex quasicrystal, the oldest known manmade quasicrystal, with a symmetry group in the shape of an icosahedron.[23] It is composed of iron, silicon, copper and calcium.[18] The quasicrystal's structure displays fivefold rotational symmetry, which cannot form naturally. [23] The quasicrystal research was led by geologist Luca Bindi of the University of Florence and Paul Steinhardt, after he theorised red trinitite was likely to contain quasicrystals as they often contain elements that rarely combine.[18][24] The structure has a formula of Si61Cu30Ca7Fe2.[23] A single 10μm grain was detected after ten months of work examining six small samples of red trinitite.[18][24][25]

Nuclear forensics[edit]

The mushroom cloud seconds after the detonation.

A 2010 study in the open access journal Proceedings of the National Academy of Sciences examined trinitite's potential value to the field of nuclear forensics.[26] Prior to this research, it was assumed trinitite's components fused identically and their original composition could not be discerned. The study demonstrated that glass from nuclear detonations could provide information about the device and associated components, such as packaging.[27]

During the 2010s millions of dollars of research was undertaken examining trinitite to better understand what information such glasses held that could be used to understand the nuclear explosion that created them.[28] The 2010 trinitite analysis was theorised by the team behind it to be useful for identifying perpetrators of a future nuclear attack.[27][29]

Researchers involved with the discovery of the quasicrystal speculated their work could improve efforts to investigate nuclear weapons proliferation since quasicrystals do not decay, unlike other evidence produced by nuclear weapons testing.[23] Trinitite has been chosen as a research subject in part due to how well-documented the nuclear test was by scientists at the time.[17] A 2015 study in The Journal of Radioanalytical and Nuclear Chemistry funded by the National Nuclear Security Administration described a method by which trinitite-like glass could be deliberately synthesised for use as test subjects for new nuclear forensic techniques.[16] Laser ablation was first successfully used to identify the isotopic signature unique to the uranium within the bomb from a sample of trinitite, demonstrating this faster method's effectiveness.[30]

Cultural impact[edit]

Sign at the test site warning of the illegality of collecting trinitite from the location.

Trinitite was not initially considered remarkable in the context of the nuclear test and ongoing war, but when the war ended visitors began to notice the glass and collect it as souvenirs.[2]

For a time it was believed that the desert sand had simply melted from the direct radiant thermal energy of the fireball and was not particularly dangerous. Thus, it was marketed as suitable for use in jewelry in 1945[31][32] and 1946.[2]

It is now illegal to take the remaining material from the site, much of which has been removed by the US government and buried elsewhere in New Mexico; however, material that was taken prior to this prohibition is still in the hands of collectors and available legally in mineral shops.[2][28] Counterfeit trinitite is also on the market; trinitite's authenticity requires scientific analysis to ascertain.[33][5]

There are samples in the Smithsonian National Museum of Natural History,[2] the New Mexico Farm and Ranch Heritage Museum,[34] and the Corning Museum of Glass;[35] the National Atomic Testing Museum houses a paperweight containing trinitite.[36] Overseas, the UK Science Museum Group collection contains a trinitite sample,[37] as does the Canadian War Museum.[38]

The SETI Institute, which seeks to find and research signs of intelligent life elsewhere in space, stated in 2021 that trinitite was to be included in their library of objects connected to "transformational moments" of potential interest to intelligent extraterrestrials.[39] The sculpture Trinity Cube by Trevor Paglen, exhibited in 2019 at the Museum of Contemporary Art San Diego as part of a themed collection of Paglen's art titled Sights Unseen, is partially made from trinitite.[40] The c.1988 artwork Trinitite, Ground Zero, Trinity Site, New Mexico by photographer Patrick Nagatani is housed at the Denver Art Museum.[41]

Similar materials[edit]

Occasionally, the name trinitite is broadly applied to all glassy residues of nuclear bomb testing, not just the Trinity test.[42]

Black vitreous fragments of fused sand that had been solidified by the heat of a nuclear explosion were created by French testing at the Reggane site in Algeria.[43] Following the atomic bombing of Hiroshima, it was discovered in 2016 that between 0.6% and 2.5% of sand on local beaches was fused glass spheres formed during the bombing. Like trinitite, the glass contains material from the local environment, including materials from buildings destroyed in the attack. The material has been called hiroshimaite.[44]

Similar naturally occurring minerals[edit]

A fulgerite from the Mauritanian desert.

Trinitite, in common with several similar naturally occurring minerals, is a melt glass.[45]

While trinitite and similar materials are anthropogenic, fulgurites, found in many thunderstorm-prone regions and in deserts, are naturally-formed, glassy materials, and are generated by lightning striking sediments such as sand.[18] The Moon's geology includes many rocks formed by one or more large impacts in which increasingly volatile elements are found in lower amounts the closer they are to the point of impact, similar to the distribution of volatile elements in trinitite.[17]

Impact glass, a material similar to trinitite, can be formed by meteor impacts.[46] Kharitonchiki (singular: kharitonchik, Russian: харитончик) is an analog of trinitite found in Semipalatinsk Test Site in Kazakhstan at ground zeroes of Soviet atmospheric nuclear tests. They are pieces of molten rock left at ground zeroes after Soviet atmospheric nuclear tests. This porous black material is named after one of the leading Russian nuclear weapons scientists, Yulii Borisovich Khariton.[47]

See also[edit]

References[edit]

  1. ^ Giaimo, Cara (June 30, 2017). "The Long, Weird Half-Life of Trinitite". Atlas Obscura. Retrieved July 8, 2017.
  2. ^ a b c d e f g Rhodes, Richard (September 2019). "A Chunk of Trinitite Reminds Us of the Sheer, Devastating Power of the Atomic Bomb". Smithsonian Magazine. Retrieved May 21, 2021.
  3. ^ a b Optical properties of glass from Alamogordo, New Mexico
  4. ^ a b c G. Nelson Eby1, Norman Charnley, Duncan Pirrie, Robert Hermes, John Smoliga, and Gavyn RollinsonTrinitite redux: Mineralogy and petrology American Mineralogist, Volume 100, pages 427–441, 2015
  5. ^ a b c Williams, Katie (November 2, 2017). "The beauty created by the 'Destroyer of Worlds'". The University of New Mexico Newsroom. Retrieved May 24, 2021.
  6. ^ Kolb, W. M., and Carlock, P. G. (1999). Trinitite: The Atomic Age Mineral.
  7. ^ "Trinitite". Health Physics Historical Instrumentation Museum Collection. Oak Ridge Associated Universities. Retrieved July 24, 2020.
  8. ^ Analyzing Trinitite, Hunter Scott.
  9. ^ Burge, David (April 4, 2018). "Have a blast: Trinity Site allows public to visit where first atomic bomb was tested". The El Paso Times. Retrieved May 27, 2021.
  10. ^ Carroll L. Tyler, AEC letter to the Governor of New Mexico, July 16, 1953. Nuclear Testing Archive, NV0103562: https://www.osti.gov/opennet/detail?osti-id=16166107
  11. ^ Hermes, Robert; Strickfaden, William (2005). "New Theory on the Formation of Trinitite". Nuclear Weapons Journal. Archived from the original on 2008-07-26. Retrieved 2014-03-17.
  12. ^ Eby, N.; Hermes, R.; Charnley, N.; Smoliga, J. (24 September 2010). "Trinitite—the atomic rock". Geology Today. 26 (5): 180–185. doi:10.1111/j.1365-2451.2010.00767.x.
  13. ^ Belloni, F.; Himbert, J.; Marzocchi, O.; Romanello, V. (2011). "Investigating incorporation and distribution of radionuclides in trinitite". Journal of Environmental Radioactivity. 102 (9): 852–862. doi:10.1016/j.jenvrad.2011.05.003. PMID 21636184.
  14. ^ a b Powell, Devin (June 18, 2013). "Riddle of the sands scattered around Trinity atomic test site". The Guardian. Retrieved May 23, 2021.
  15. ^ "INTERIM REPORT OF CDC'S LAHDRA PROJECT – Appendix N. pg 38" (PDF). Archived from the original (PDF) on 2014-03-17.
  16. ^ a b c d e f Joshua J. Molgaard, John D. Auxier, Andrew V. Giminaro, C. J. Oldham, Matthew T. Cook, Stephen A. Young, and Howard L. Hall (January 20, 2015). "Development of synthetic nuclear melt glass for forensic analysis". The Journal of Radioanalytical and Nuclear Chemistry. 304 (3). pp. 1293–1301. doi:10.1007/s10967-015-3941-8. PMC 4514012. PMID 26224989.CS1 maint: multiple names: authors list (link)
  17. ^ a b c Crane, Leah (February 8, 2017). "Glass from nuclear test site shows the moon was born dry". New Scientist. Retrieved May 24, 2021.
  18. ^ a b c d e Castelvecchi, Davide (May 17, 2021). "First nuclear detonation created 'impossible' quasicrystals". Nature. Retrieved May 23, 2021.
  19. ^ a b c Patrick H. Donohue, Antonio Simonetti (January 2016). "Vesicle Size Distribution as a Novel Nuclear Forensics Tool". PLoS One. Retrieved June 4, 2021.
  20. ^ Parekh, P. P.; Semkow, T. M.; Torres, M. A.; Haines, D. K.; Cooper, J. M.; Rosenberg, P. M.; Kitto, M. E. (2006). "Radioactivity in Trinitite six decades later". Journal of Environmental Radioactivity. 85 (1): 103–120. CiteSeerX 10.1.1.494.5179. doi:10.1016/j.jenvrad.2005.01.017. PMID 16102878.
  21. ^ a b c D. J. Bailey, M. C. Stennett, B. Ravel, D. E. Crean, N. C. Hyatt (April 26, 2019). "A synchrotron X-ray spectroscopy study of titanium co-ordination in explosive melt glass derived from the trinity nuclear test". RSC Advances. Retrieved May 24, 2021.CS1 maint: multiple names: authors list (link)
  22. ^ Parekh, P. P.; Semkow, T. M.; Torres, M. A.; et al. (2006). "Radioactivity in trinitite six decades later". Journal of Environmental Radioactivity. 85 (1): 103–120. CiteSeerX 10.1.1.494.5179. doi:10.1016/j.jenvrad.2005.01.017. PMID 16102878.
  23. ^ a b c d Mullane, Laura (May 18, 2021). "Newly discovered quasicrystal was created by the first nuclear explosion at Trinity Site". Phys.org. Retrieved May 21, 2021.
  24. ^ a b Privitera, Salvo (May 24, 2021). "Un 'quasicristallo' impossibile è stato trovato nel luogo del primo test nucleare". Everyeye Tech (in Italian). Retrieved May 24, 2021.
  25. ^ Zimmer, William (May 19, 2021). "Des chercheurs découvrent un " quasi-cristal " formé lors de l'explosion de la première bombe nucléaire". Tom's Guide (in French). Retrieved May 24, 2021.
  26. ^ Spotts, Pete (November 12, 2010). "Scientists use 'trinitite' from 1945 to help decode nuclear blasts". The Christian Science Monitor. Retrieved May 25, 2021.
  27. ^ a b "Nuclear debris could reveal clues of bomb's origin". BBC. November 8, 2010. Retrieved May 27, 2021.
  28. ^ a b Geuss, Martin (January 9, 2014). "Trinitite: The radioactive rock buried in New Mexico before the Atari games". Ars Technica. Retrieved May 5, 2021.
  29. ^ Johnston, Casey (November 11, 2010). "Nuclear debris carries signatures of bomb that caused it". Ars Technica. Retrieved May 28, 2021.
  30. ^ Scoles, Sarah (November 6, 2018). "How a Uranium Hunter Sniffs Out Nuclear Weapons". Wired. Retrieved May 28, 2021.
  31. ^ Steven L. Kay – Nuclearon – Trinitite varieties
  32. ^ "INTERIM REPORT OF CDC'S LAHDRA PROJECT – Appendix N. pg 39, 40" (PDF). Archived from the original (PDF) on 2014-03-17.
  33. ^ "Authenticating Trinitite nearly 70 years later". Enformable. July 10, 2014. Retrieved May 24, 2021.
  34. ^ Gomez, Adrian (February 16, 202). "Meanwhile, back at the ranch". The Albuquerque Journal. Retrieved May 27, 2021.
  35. ^ 5 Bits of Trinitite Glass from the Corning Museum of Glass website. Accessed on June 4, 2021
  36. ^ Manhattan Project Artifacts from the National Atomic Testing Museum's website. Accessed on June 4, 2021
  37. ^ Science Museum Group. Specimen of sand melted by the explosion of the first test atomic bomb, New Mexico, July 1945. 1946-182Science Museum Group Collection Online. Accessed June 4, 2021. https://collection.sciencemuseumgroup.org.uk/objects/co5565/specimen-of-sand-melted-by-the-explosion-of-the-first-test-atomic-bomb-new-mexico-july-1945-trinitite-mineral-specimens.
  38. ^ TRINITITE FRAGMENT from the Canadian War Museum's website. Accessed on June 4, 2021
  39. ^ Smith, Adam (April 29, 2021). "Seti is building a 'Library of the Great Silence' for alien civilisations to use". msn.org. Retrieved May 24, 2021.
  40. ^ Mayer, Pia (February 28, 2019). "Trevor Paglen unveils 'Sites Unseen' at MCASD Downtown". The Mesa Press. Retrieved May 28, 2021.
  41. ^ Trinitite, Ground Zero, Trinity Site, New Mexico on the website of the Denver Art Museum. Accessed on June 4, 2021
  42. ^ Robert Twigger (2010). "Eight". Lost Oasis: In Search Of Paradise. Hachette. ISBN 9780297863878. Retrieved 2014-03-18.
  43. ^ Radiological Conditions at the Former French Nuclear Test Sites in Algeria: Preliminary Assessment and Recommendations International Atomic Energy Agency, 2005
  44. ^ Carne, Nick (May 13, 2019). "Hiroshima's sands contain atomic bomb glass". Cosmos Magazines. Retrieved May 27, 2021.
  45. ^ Wittke JH, Weaver JC, Bunch TE, Kennett JP, Kennett DJ, Moore AM, Hillman GC, Tankersley KB, Goodyear AC, Moore CR, Daniel IR Jr, Ray JH, Lopinot NH, Ferraro D, Israde-Alcántara I, Bischoff JL, DeCarli PS, Hermes RE, Kloosterman JB, Revay Z, Howard GA, Kimbel DR, Kletetschka G, Nabelek L, Lipo CP, Sakai S, West A, Firestone RB (2013). "Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago". Proceedings of the National Academy of Sciences of the United States of America. 110 (23): E2088–97. Bibcode:2013PNAS..110E2088W. doi:10.1073/pnas.1301760110. PMC 3677428. PMID 23690611.
  46. ^ "Wine Bottle Art – Ingenious Methods to Recycle Wine Bottles". Colloidal silicon dioxide. 16 October 2010.
  47. ^ "A Nuclear Family Vacation in Russia." Slate. July 10, 2006.

Further reading[edit]

External links[edit]